
Sample-Based Forecasting Exploiting
Hierarchical Time Series

Ulrike Fischer, Frank Rosenthal, Wolfgang Lehner
Dresden University of Technology

Database Technology Group
01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Time series forecasting is challenging as sophisticated
forecast models are computationally expensive to build.
Recent research has addressed the integration of forecasting
inside a DBMS. One main benefit is that models can be
created once and then repeatedly used to answer forecast
queries. Often forecast queries are submitted on higher
aggregation levels, e.g., forecasts of sales over all locations.
To answer such a forecast query, we have two possibilities.
First, we can aggregate all base time series (sales in Austria,
sales in Belgium ...) and create only one model for the
aggregate time series. Second, we can create models for all
base time series and aggregate the base forecast values. The
second possibility might lead to a higher accuracy but it is
usually too expensive due to a high number of base time
series. However, we actually do not need all base models to
achieve a high accuracy, a sample of base models is enough.
With this approach, we still achieve a better accuracy than
an aggregate model, very similar to using all models, but
we need less models to create and maintain in the database.
We further improve this approach if new actual values of
the base time series arrive at different points in time. With
each new actual value we can refine the aggregate forecast
and eventually converge towards the real actual value.
Our experimental evaluation using several real-world data
sets, shows a high accuracy of our approaches and a fast
convergence towards the optimal value with increasing sam-
ple sizes and increasing number of actual values respectively.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing; G.3 [Probability and
Statistics]: Time series analysis

1. INTRODUCTION
Advanced data analysis in data-warehouse systems in-

volves increasingly sophisticated statistical methods that go

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS12 2012, August 8-10, Prague [Czech Republic]
Editors: Bipin C. Desai, Jaroslav Pokorny, Jorge Bernardino
Copyright 2012 ACM 978-1-4503-1234-9/12/08 ...$15.00.

well beyond the rollup and drilldown of traditional BI [9]. In
this context, time series forecasting is an important instru-
ment as it is crucial for decision making in many domains.
As a running example, we refer to a market research com-
pany that collects monthly sales of different products (e.g.,
audio devices) delivered by different retailers. With this
data they generate aggregated reports over certain products
and provide forecasts for the next month to their customers,
e.g., manufacturers. These reports form the basis of eco-
nomic decisions, such as planning of production batches.

Reasonable forecasts require the specification of a stochas-
tic model that captures the dependency of future on past
values. We will refer to such models as forecast models. The
creation of forecast models is typically computationally ex-
pensive, often involving numerical optimization schemes to
estimate model parameters. Once a model is created and
parameters are estimated, it can efficiently be used over and
over again to forecast future values of the time series. As
new data arrives, the forecast model might require mainte-
nance in form of parameter re-estimation, which is compu-
tationally expensive as well as most parameters can not be
maintained incrementally.

Current research focuses on the integration of time series
forecasting and prediction in general inside a DBMS [5, 10,
13]. These approaches allow for improved performance and
additional functionality inside the database. Consider the
following simple forecast query that retrieves forecasts of
audio devices for the next month:

SELECT orderdate , SUM (s a l e s)
FROM f a c t s
WHERE product=’ audio dev i c e s ’
GROUP BY orderdate
FORECAST current_date + interval ’ 1 month ’

One could answer such a query by computing a forecast
model on the fly, which, however, leads to long processing
times due to expensive model creation. Thus, forecast mod-
els are precomputed and stored within the DBMS. In addi-
tion, others queries can benefit from forecasts based on these
models. A main challenge is the determination of a good
set of models to store in the database that reduce model
maintenance costs and achieve high forecast accuracy. Es-
pecially aggregation hierarchies open up the possibility of
reducing the number of forecast models by applying deriva-
tion schemes [4, 12].

In aggregation hierarchies, each unique combination of di-
mension attributes (e.g., product name, location) forms a
base time series. Queries often request forecasts on aggre-
gation of these time series. For example, monthly sales of

5
10
15
20
25
30
35

Sep‐05 Sep‐06 Sep‐07 Sep‐08
5

10

15

20

25

Sep‐05 Sep‐06 Sep‐07 Sep‐08
5

10
15
20
25
30
35

Sep‐05 Sep‐06 Sep‐07 Sep‐08

70

120

170

220

270

320

370

420

Sep‐05 Mar‐06 Sep‐06 Mar‐07 Sep‐07 Mar‐08 Sep‐08 Mar‐09

qu
an
tit
y
(in

 m
ill
io
ns
)

time t (months)

0

20

40

60

80

100

aggregate
model

all base
models

21% base
models

re
la
tiv
e
er
ro
r

(w
rt
ag
gr
eg
at
e
m
do

el
)

Forecast

Austria Belgium China

base time series

aggregate time series – all countries

…

Figure 1: Aggregation of Monthly Sales of Audio Devices.

audio devices might be recorded according to different loca-
tions (bottom of Figure 1). Our example aggregation fore-
cast query introduced before requests the aggregate forecast
of audio devices over all locations (top of Figure 1). We have
two possibilities to provide the result:

• Aggregate→ Forecast: First, we can aggregate all base
time series and build one model for the aggregate time
series. The aggregate forecast is then calculated using
this model.

• Forecast → Aggregate: Second, we can build models
for all base time series and produce forecasts on base
level. Those forecasts are then aggregated to retrieve
the aggregate forecast.

The second possibility might lead to a higher accuracy of
the aggregate forecast as it might be easier to find good
models for more fine granular elements. This was studied
and examined on different data sets in statistical and specific
forecasting literature [14].

However, as model creation and maintenance is compu-
tationally expensive, it is not always possible to create and
store all base models. Thus, an aggregate model with a
lower accuracy is used instead. However, we actually do not
need all base models, a sample of base models can still out-
perform the associated aggregate model. In the top right
corner in Figure 1, we display an initial experiment using
the sales data set of audio devices. Our baseline is the fore-
cast error of an aggregate model created with the aggregate
time series over all locations. We can observe that the er-
ror is decreased by 25% if we aggregate the forecasts of all
base models instead. However, if we just use a 21% sample
of base models, we achieve pretty much the same accuracy
as using all models. Thus, we need to create and maintain
less than a quarter of the models, but we do not loose any
accuracy compared to using the aggregate model.

Following this approach, we can further improve the ag-
gregate forecast if some of the real data is already avail-
able. For example, it is quite common that the market re-
search company retrieves sales of different retailers at dif-
ferent point in times. An successful retailer might already

have reported his sales in his location, while another retailer
has not provided any data yet. Thus, the new real values
of the base time series arrive asynchronously. However, cus-
tomers wish to retrieve aggregated statistics at all times.
Although, we can not yet provide the real aggregate, we can
refine the aggregate forecast with the available real values
and eventually converge towards the real aggregate value.

Contributions and Outline We first give an overview
of our system architecture and the involved components
(Section 2). Then, in Section 3, we propose different estima-
tors to calculate an overall aggregate forecast from a sample
of base forecasts. This aggregate forecast can be further re-
fined by including already available real values (Section 4).
Last, in Section 5, we shortly discuss how to configure a good
sample of base time series. Our experimental study (Section
6) shows a high forecast accuracy with just a small sample
of base time series and fast convergence towards the optimal
value with increasing sample size and increasing number of
real values respectively. Finally, we survey related work in
Section 7 and conclude in Section 8.

2. SYSTEM ARCHITECTURE
Figure 2 shows our high-level system architecture. Time

series are stored within the DBMS, where we refer to non-
aggregated time series as base time series. A base time series
Xi contains a chronologically ordered series of observations
over time xi,1, xi,2, ..., xi,t, where i clearly identifies the base
time series. The model pool stores pre-built forecast models
Mi created over base time series Xi. The type of the forecast
model (e.g., exponential smoothing) needs to be chosen by
a domain expert or using an heuristic algorithm [22]. The
decision for which base time series Xi to build and store a
model in the pool can be done manually [4] or by using an
empirically algorithm that tries different configurations and
chooses the best one [12]. In Section 5, we shortly discuss
how to design a good pool of forecast models.

An aggregation forecast query requires the one-step ahead
aggregated forecast ŷt+1 over an arbitrary number of base
time series at time t. For sake of simplicity of the presenta-
tion, we restrict the aggregate forecast to the sum and we

Model Pool Time Series

Select
Models

Forecast
Time Series

Aggregate
Forecast

Refine
Aggregate

Aggregation
Forecast Query

Maintain
Models

Store
Data

New Time
Series Data

}

Figure 2: System Architecture.

only consider one-step ahead forecasts.
In general, it is processed as follows (top of Figure 2): We

first select all base models {Mi} that are available and can
be used to answer that query. With each model we calculate
the forecast value for the corresponding base time series Xi,
which we denote as x̂i,t+1. This calculation of forecasts can
be done very quickly as there is no need to access the base
data. We then estimate the aggregate forecast ŷt+1 over the
given base forecasts (Section 3). Finally, we check if some of
the real time series values xi,t+1 are already available at the
current point in time t. If so, we further refine the aggregate
forecast using the error between the base forecast values as
well as the real time series values (Section 4).

As new actual time series values arrive xi,t+1, xi,t+2, ... we
need to maintain our model (bottom of Figure 2): First, this
requires updating the model to the current state of the time
series. Second, we might need to adapt the parameters of
the model. As most parameters can not be calculated incre-
mentally, parameter re-estimation is as expensive as model
creation itself. Therefore, it is not just important to reduce
the number of stored models in the pool but also to reduce
the number of parameter re-estimations of a single model.
Different strategies have been proposed to trigger parame-
ter re-estimation, like threshold-based, update-based [16] or
on-demand [25]. Here, we will use the simple time-based
strategy that triggers parameter re-estimation every x in-
serts. This is one of the most robust strategies. Finally, we
store the new time series values in the DBMS.

We now further detail the main components of our system,
which is the aggregation of the forecast values (Section 3),
the refinement of the forecasts with new data (Section 4)
and the initial design of the forecast model pool (Section 5).

3. AGGREGATION
In this section, we discuss how to obtain an overall ag-

gregate forecast from a given sample of base forecast val-
ues. We first introduce the mathematical fundamentals of
estimating the sum of a population (Subsection 3.1) and dis-
cuss uniform estimation (Subsection 3.2). Then, we improve
this approach by using the history of the time series values
(Subsection 3.3).

3.1 Aggregation Basics
Consider N base time series {Xi} and corresponding fore-

cast values {x̂i,t+1}, where 1 ≤ i ≤ N . An aggregation
forecast query wants to retrieve the aggregate forecast ŷt+1,

which can be calculated by

ŷt+1 =

N∑
i=1

x̂i,t+1. (1)

Our goal is to estimate the forecast value ŷt+1 of the aggre-
gate time series from a sample of base time series S = {Xi}
of size n ≤ N . Horvitz and Thompson [21] introduced an
estimator that can be used with any probability design with-
out replacement. The estimate of the sum is given by

ŷt+1 =
∑
Xi∈S

x̂i,t+1

πi,t+1
, (2)

where πi,t+1 denotes the first-order inclusion probability of
x̂i,t+1. The higher the probability of inclusion, πi,t+1, of
a unit i to the sample, the less weight the corresponding
response x̂i,t+1 is given. Therefore, each value is scaled-
up or “expanded” by its inclusion probability. The main
challenge is to choose good inclusion probabilities.

3.2 Uniform Aggregation
If there is no additional information available, we choose

uniform probability of inclusion. Therefore, we set πi,t+1 =
n/N for all i and the aggregate forecast is estimated by

ŷt+1 =
N

n

∑
Xi∈S

x̂i,t+1. (3)

However, uniform estimation might lead to a strong under-
or overestimation of the aggregate value, because different
base forecasts might contribute differently to the aggregate
forecast. For example, if we have a 50% sample, we would
scale the sum by two. However, our sample might contain
many high forecast values, which are in total much higher
than half the aggregate forecast. Thus, we would strongly
overestimate the aggregate forecast. As we are in a time
series context, we can additionally use the information in the
history of the time series to provide better estimates. The
key idea is to use the historical ratio of the base time series
to the overall aggregate series as inclusion probabilities.

3.3 Aggregation with Historical Ratios
We denote the historical ratio di,t+1 of a base value

xi,t+1 and an aggregate time series value yt+1 as di,t+1 =
xi,t+1/yt+1. Thus, these ratios can take values between 0

and 1 and
∑N

i=1 di,t+1 = 1.
As we do not know the current ratio at time t+1, we need

to decide which and how many past ratios to use as well as

0 5 10 15 20 25 30 35

0.
01

0
0.

01
4

0.
01

8
0.

02
2

time t (month)

hi
st

or
ic

al
 ra

tio
s

d4,30d4,18

d4,29

Figure 3: Calculation of Inclusion Probabilities.

on an aggregation scheme. We can make two observations.
If the ratios highly fluctuate over time, we can choose a ratio
close to the current time t+ 1 that might resemble the next
ratio best. If the ratios are approximately stable, the type
of ratio probably has quite a low influence, so we can choose
a ratio close to the current time t+ 1 as well.

However, in addition, it might make sense to choose a
ratio according to the seasonality of the data (see example
in Figure 3). We again use a base time series i = 4 from
our sales real-world data set, containing the total sales for
audio devices of retailers in Czech Republic according to
different months. Figure 3 displays the historical ratios di,t
for different months over time. Assume we want to fore-
cast the 30th month and the time series i = 4 is part of
our sample. Therefore, we need the ratio d4,30 as inclusion
probability. It probably makes sense to use one of the recent
ratios, for example the last ratio d4,29. In addition, we can
see a strong seasonal effect in the ratios, which is related to
the seasonal effects in the time series itself. This is an an-
nual effect as people tend to show different shopping habits
at different times of the year (e.g., Christmas). Therefore,
it might also make sense to use the ratio 12 month before
d4,(30−12) = d4,18.

To conclude, we propose a combined strategy, where we
use a mixture of past ratios close to the current point in
time and the ratio one season ago:

d̂i,t+1 = α ·
∑k−1

x=0 di,t−x

k
+ (1− α) · di,t+1−season. (4)

We therefore average over the last k ratios and include the
ratio one season ago. The seasonality is usually the same
for the whole data set and known by the forecast models.
If it is not available, we just average over the last k ratios.
The higher the number of past values k, the more robust
we are to outliers. However, we might loose in accuracy.
The parameter α determines the weight of the seasonal ra-
tio. The optimal setting of these parameters depends on the
characteristics of the time series data. We tried different
parameters for k and α using the data sets from the exper-
imental evaluation (see Subsection 6.1). We observed that
a value of k = 3 (using the last three ratios) and α = 0.5
(uniform weighting) leads to a good accuracy in most cases.

The final inclusion probabilities are calculated by sum-
ming over all probabilities within the sample and normaliz-
ing with the sum over all probabilities (= 1). As a result,
the aggregate forecast ŷt+1 at time t+ 1 is estimated by

ŷt+1 =
1∑

Xi∈S d̂i,t+1

·
∑
Xi∈S

x̂i,t+1, (5)

where the d̂i,t+1 are estimated using Formula 4.
Our proposed estimator can be used ad-hoc to answer an

aggregation query from an available sample of base models
as it does not require any parameter estimation.

4. REFINE
If some real data becomes available, this data should re-

place the base forecasts to obtain a better aggregate forecast.
In this section, we discuss different possibilities to converge
towards the real aggregate forecast values as fast as possible.
We first introduce three basic approaches and there param-
eters in Subsection 4.1. Then, we discuss two approaches to
set those parameters (Subsection 4.2 and 4.3).

4.1 Refine Basics
Let R = {xi,t+1} be the available real values of size m at

time t, with 1 ≤ i ≤ m. In simplest case, we can calculate
the forecast ŷt+1 by scaling the sum over these real values:

Refine I: ŷt+1 = α ·
∑

Xi∈R

xi,t+1. (6)

This first näıve approach only scales the real values and
does not include any forecast values. However, if we use
an appropriate scaling α, this simple method might already
lead to good results.

Subsequently, the second approach additionally includes
the available sample of forecasts S = {x̂i,t+1}. Let S be
the remaining sample of forecasts S = S \ R of size o (i.e.,
forecasts where no real value is available). We can calculate
ŷt+1 by using real values if available and forecasts otherwise:

Refine II: ŷt+1 = α ·

 ∑
Xi∈R

xi,t+1 +
∑
Xi∈S

x̂i,t+1

 . (7)

The superiority of one method over the other strongly de-
pends on the quality of the forecasts. If we have forecasts
with a low accuracy, refinement with just the real values
might work better. However if we have reasonable forecasts,
the inclusion of those forecasts strongly improves the ag-
gregate forecast. In order to combine both approaches into
one method, we can examine the error of the available real
values and include this error into our calculation. The key
idea is to use the real values to evaluate the predictions and
correct the remaining predictions using an estimate of the
overall error:

Refine III: ŷt+1 =α ·

 ∑
Xi∈R

xi,t+1 +
∑
Xi∈S

x̂i,t+1

− β ·

∑
Xi∈R

ei,t+1. (8)

We subtract the sum over the single errors ei,t+1 scaled
by some factor β from our estimated forecast. We therefore
view the errors for the gathered real values as sample of the
set of all prediction errors. If no significant drift occurred
in the data and hence the models are reasonable accurate,
the expected error will become zero. Otherwise the overall
prediction is corrected by the probable systematic drift.

In the following, we discuss how to set these scaling pa-
rameters and how to calculate the errors.

ଵ,௧ݔ

ଶ,௧ݔ

…

ොଵ,௧ାଵݔ ଵ,௧ାଵݔ

?ଷ,௧ାଵݔ

realforecast error

ො௧ାଵݕ

0 /	 መ݀ଷ,௧ାଵ ∙ ො௧ାଵݕ െ ଷ,௧ାଵݔ

௧ݕ

?

ොଶ,௧ାଵݔ ?

?

?

?

݁̂௧ାଵ

ොଵ,௧ାଵݔ െ ଵ,௧ାଵݔ

old

…… …

ଷ,௧ݔ

ସ,௧ݔ

1

2

3

4

௧ାଵݕ

Figure 4: Refine III Overview

4.2 Uniform Refine
If we do not have any other information besides the fore-

casts and real values, we can only perform uniform scaling.
Therefore, the parameter α is calculated by

Refine I: α =
N

m
(9)

Refine II/III: α =
N

m+ o
, (10)

whereN are the total number of time series, m is the number
of available real values and o is the number of remaining base
forecast values in the sample.

For refine III, we need to determine the errors of the avail-
able real and forecast values. We can distinguish four differ-
ent cases (Figure 4). If we have no real value (case 2 and 4),
we can not calculate any error, regardless of the existence
of a forecast values. If we do have a real value as well as
a forecast value (case 1), we can calculate the true model
error by the taking the difference between those two:

ei,t+1 = x̂i,t+1 − xi,t+1. (11)

If we do have a real value but no forecast value, we can not
calculate a true error (case 3). We therefore assume an error
of 0 for uniform refine. We extend this in Subsection 4.3.

In order to scale the errors, we use again uniform scaling.
However, we need to account for the number of included real
values, since real values replace estimates and therefore do
not contribute to the overall error anymore. Therefore, the
errors are scaled as follows:

β =
N − (n− o)

(n− o) , (12)

where n− o is the number of determined errors (sample size
n minus remaining sample o).

4.3 Refine with Historical Ratios
Similar to our aggregation approach, we can improve the

refinement of forecast values (scaling as well as error calcu-
lation) if we use the information in the history of the time
series:

Refine I: α =
1∑

Xi∈R d̂i,t+1

(13)

Refine II/III: α =
1∑

Xi∈R∪S d̂i,t+1

(14)

The estimator now requires the weights of the real values
for refine I and the weights of the real as well as the forecast
values for refine II and III.

For refine III, we extend the error calculation for case 3
of Figure 4. As we know the estimated aggregate forecast
ŷt+1 and the historical ratios d̂i,t+1, we can estimate the
forecast value of the base time series x̂i,t+1 by scaling down
the estimated aggregate forecast:

êi,t+1 = d̂i,t+1 · ŷt+1 − xi,t+1. (15)

As more and more real values arrive, the accuracy of the
aggregate forecast ŷt+1 increases and thus we can retrieve a
better estimate of the base forecast value x̂i,t+1.

We again propose to the use the historical ratios in order
to scale the errors:

β =
1−

∑
Xi∈R d̂i,t+1∑

Xi∈R d̂i,t+1

. (16)

In the bottom part, we include the historical ratios of all
available real values as we calculate an error over all of them.
We again do not include those values to estimate the overall
error and therefore subtract the weights from the sum over
all weights.

5. CONFIGURATION
In the last two sections, we discussed how to estimate and

refine an aggregate forecast from an available sample of base
forecasts. In this section, we shortly discuss how to actually
design such as sample.

Consider N time series, our goal is to choose a sample
S = {Xi} of base time series for a given sample size n that
minimizes the error of the one-step ahead aggregate forecast:

min
S

error(ŷt+1, yt+1). (17)

The aggregate forecast ŷt+1 is estimated by Equation 5.
In the näıve case, we could apply uniform sampling and

choose the sample randomly. However, uniform sampling
has the well known disadvantage of ignoring the variance in
the data distribution [8]. We can achieve a higher accuracy
if we use a weighted sampling scheme. In weighted sampling
designs, the probability of an item included into the sample
varies among the items in the population [19]. Similar to
aggregation, the challenge is to determine reliable weights
in order to achieve a high accuracy, where we distinguish
two different cases.

First, we do not have built forecast models for the time se-
ries X1...XN . In this case, we can only use the information
in the history of the time series. Similar to our aggrega-
tion approach, we need to choose those time series with a
higher probability that contribute the most to the overall
aggregate forecast. However, in contrast to our aggregation
approach we do not want to maximize the accuracy for just
the next aggregate forecast but we want to choose a sample
that maximizes the accuracy of possible all future aggregate
forecasts. We therefore average over all past ratios and the
weights are calculated by

wi,t =
1

t

t∑
j=1

di,t−j . (18)

Second, we already have built base models Mi for all base
time series Xi. These models were built for evaluation pur-
pose and our goal is to choose only a subset of those models
to store and, more importantly, maintain in the database.
Here, we can additionally use the information available in

the models. The main assumption is that it would be wise to
choose time series that have a low model error and therefore
produce good forecasts. For this we use the in-sample error
of the models, i.e., the error is calculated over the training
data by using the best parameter combination of the model.
The final weights for weighted sampling are given by

wi,t =
1

in sample error(Mi)
(19)

and normalized with the sum over all in-sample model errors.
Note, in both cases, we could also sort the time series

by their weights in descending order and choose the top-n
time series. This is a special case of our general weighted
sampling approach.

If the weights change, either the contribution of the time
series to the aggregate series or the accuracy of the models,
we need to adapt our sample. A simple approach would
be to periodically check the weights of the time series and
recalculate the sample if a significant change occurred.

6. EXPERIMENTAL EVALUATION
We conducted an experimental study to evaluate the

(1) overall performance (accuracy and speedup) of our ap-
proaches on four real-world data sets as well as the accuracy
and characteristics of our (2) aggregation, (3) refine and (4)
configuration estimators.

6.1 Experimental Setting
To implemented our approaches, we used the statis-

tical computing software environment R (http://www.
r-project.org/). It provides efficient build-in forecast
methods and parameter estimation approaches, which we
used to build the forecast models. All experiments were ex-
ecuted on an IBM Blade with two processors (each a Dual
Core Intel Xeon at 2.80 GHz) and 4 GB RAM.

We used one synthetic data set and four different real-
world data sets:

• Synthetic data: The synthetic data set is randomly
generated and serves the purpose of showing the gen-
eral characteristics of the different approaches. We did
not generate complete time series. We only randomly
generated the real values of base time series X1...XN

(between 0 and 1) at time t+ 1. The aggregate value
yt+1 is then the sum of those random values. We gener-
ated 1, 000 values, so, for uniform probability distribu-
tion functions, the expected aggregate value is about
500. Then, we created three data sets of forecast val-
ues for time t+ 1. The first data set no error assumes
that we could create perfect models and the forecast
value are the same like the real values at time t + 1.
The second data set random adds a random error of
maximum 20% to the forecasts. The final data set
systematic adds a positive error of 10% to the forecast
values, thus simulating a systematic error.

• Retailer sales: The first real-world data set contains
32 time series of monthly sales (February 2004 to May
2009) of audio devices according to different countries.

• Wind energy: For the third data set, we use the pub-
licly available NREL wind integration data set [3]. We
choose about 80 time series at random from this data

set, which contain supply of wind energy for 2004 to
2006 in a resolution of one day.

• Worldwide electricity generation: This data set in-
cludes metered world-wide electricity generation from
the US Energy Information Administration [2]. It con-
sists of 1344 time series according to different coun-
tries, states and products from the years 1980 to 2008
in an annual resolution.

• Australian domestic tourism: The final data set con-
sists of observations on the number of visitor nights
for the Australian domestic tourism [1]. The number
of visitor nights were recorded according to different
states and purposes of visit for the years 2004 to 2010
in a quarterly resolution.

To build the base and aggregate models for the real-world
data sets, we use exponential smoothing models [22] as well
as autoregressive integrated moving average (ARIMA) mod-
els [7]. Both are well examined [17], have shown empirically
to be able to model a wide range of real world time se-
ries [23] and are usually computationally more efficient than
elaborate machine learning approaches. In order to mea-
sure the accuracy of our approaches, we use the symmetric
mean absolute percentage error (SMAPE), which is a scale-
independent accuracy measure and takes values between 0
and 1, where 0 refers to perfect accuracy. It is defined as:

SMAPE =
|xt − x̂t|
xt + x̂t

, (20)

where xt describes the real value of a time series at time t
and x̂t the corresponding forecast value.

We used about 50% of the values of all time series to
train the models and the remaining 50% to evaluate our
approaches. We always updated the models and historical
ratios after each new real time series value. We averaged
over 1, 000 runs for all experiments.

6.2 Overview
To show the general benefit of our approach, we provide

first an overview over all data sets. Then, in the following
subsections, we discuss the characteristics of our approach
on selected data sets. In Figure 5(a) the forecast error of all
data sets using an aggregate model (agg) and using all base
models (base) is shown. We observe that we can reach a
better accuracy by aggregation of base forecasts for almost
all data sets. Only the wind data set (wind) shows hardly
a difference of the two approaches. The reason is that wind
data is hard to predict and we are not able to build a very
accurate model on aggregate as well as on base level. For
the electricity (el) and tourism data set (to), we have sev-
eral aggregation possibilities as the time series are described
by more than one attribute. We, therefore, provide the best
aggregation query with the highest error difference of base
models to an aggregate model (el(b) and to(b)) and the aver-
age error (electr(a) and tour(a)) over all aggregation queries.

On top of the errors in Figure 5(a), we noted the speedup
in terms of model maintenance costs of our sampling ap-
proach over using all base models. This speedup is calcu-
lated by using our best sampling approach (weighted sam-
pling with historical ratios) and by using the sample size that
achieves the same accuracy as all base models. We permit-
ted a tolerance of 5%. For all data sets, we achieve at least

sales wind el(b) el(a) to(b) to(a)

agg
base

sm
ap
e

0.
00

0.
05

0.
10

0.
15

4.8

20

33.3

3.3
2.4

1.8

(a) Overview Accuracy and Speedup

20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

sample percentage

sm
ap

e

sys+uniform
sys+weights
rand+uniform

no+uniform
rand+weights
no+weights

(b) Aggregation - Synthetic Data

20 40 60 80 100

0.
00

0.
10

0.
20

0.
30

sample percentage

sm
ap

e

uniform
average
weights
agg
base

(c) Aggregation - Sales Data

Figure 5: Overview and Aggregation Experimental Results.

a speedup of 2. Thus, in general, we need to maintain just
half of the forecast models (sample percentage = 50%) to
reach the same accuracy as using all base models. The sales
and electricity data set perform best in terms of speedup
(4.8 and 33.3 respectively) and accuracy improvement.

6.3 Aggregation
In a second series of experiments, we measured the accu-

racy of our aggregation estimators with increasing sample
size. In Figure 5(b), the SMAPE for the synthetic data set
is shown, using our uniform as well as our adapted estima-
tor (Equation 5). To calculate the historical ratios for the
synthetic data set, we use the actual ratio of the real values
with a random error of 5%.

For the forecasts with no error (no+weight), we converge
fast towards an error of zero using our adapted estimator. In
contrast, the uniform estimator leads to a much worse error
and slowly converges towards an error of 0 with increasing
sample size (no+uniform).

For the forecasts with random error, we can only reach a
certain minimum error using all forecasts. Both, the uniform
and adapted estimator converge towards this error. The uni-
form estimator is similar to the estimator of the forecasts
with no error as the random forecast errors compensate each
other out (rand+uniform). In contrast, our adapted estima-
tor shows a much better accuracy (rand+weights).

For the forecasts with systematic error, the adapted es-
timator shows a constant error (sys+weights). This is the
best possible error as all forecasts have a similar systematic
error. In contrast, the uniform estimator starts worse and
converges towards this minimum error (sys+uniform).

We performed the same experiment using the sales data
set (Figure 5(c)). The straight lines shows the error when ag-
gregating over all base forecasts while the dotted line shows
the error when creating a model for the aggregate time series
(agg). We can see that the aggregation of the base forecasts
leads to a higher accuracy than the forecast over the aggre-
gate model. In addition, we measured the accuracy using
the uniform estimator (uniform) and our adapted estimator
(weights) with the combined inclusion probabilities (Equa-
tion 4). The adapted estimator leads to a high accuracy
even with small sample sizes. With a sample size of 30%
the accuracy is better than the accuracy of a model over the

aggregate series. In order to show the benefit of our sug-
gested inclusion probabilitiy approach, we also plotted the
accuracy of using our adapted estimator with an average
over all historical ratios (average) as inclusion probability.
Our combined strategy achieves a maximum improvement
of about 40% compared to using all ratios. We noticed the
same characteristics of the different approaches for the other
data sets and thus omit detailed figures.

6.4 Refine
In this subsection, we experimentally evaluate the accu-

racy of our refinement approach according to different num-
ber of real values available and to different sample sizes.

We start with uniform refine and the synthetic data set,
leaving out the forecasts with no error. Figure 6(a) shows
the accuracy for a 50% sample of forecast values with in-
creasing number of real values included in the aggregate
forecast. We can see that refine I is the same for the forecasts
with random (rand I) as well as the forecasts with system-
atic error (sys I) as it only includes the real values. It shows
a high outburst in the beginning and then converges towards
an error of zero. Refine II shows a higher accuracy for the
random errors (rand II). For the systematic errors (sys II),
it is better than refine I in the beginning but similar in the
end as the forecasts have a strong bias. Refine III captures
this error for the synthetic data set (sys III) and shows a
much better accuracy than the other two approaches. For
the random error (rand III), we can not filter out such an
error but nevertheless refine III shows only an outburst in
the beginning and than converges towards refine II as the
errors cancel each other out.

Figure 6(b) displays the accuracy of the wind data set.
Similar to our synthetic data set with systematic errors we
can see a strong outburst of refine I in the beginning. How-
ever, it then shows a better accuracy than refine II. Again,
refine III shows the best accuracy with only a small outburst
in the beginning as there are not enough real values avail-
able to make accurate error estimates. Figure 6(c) shows
the experiment for a fixed number of real values (50% of all
real values) and increasing sample sizes. We can see that re-
fine I stays approximately constant as it is independent from
the sample size. Refine II gets worse with increasing sample
size as more forecasts with a high error are included in the

0 200 400 600 800 1000

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

number of real values

sm
ap

e

rand I
sys I
sys II
sys III
rand III
rand II

(a) Synthetic Data - 50% Sample

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

number of real values

S
M

A
P

E

refine I
refine II

refine III
forecast

(b) Wind Data - 50% Sample

20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

sample percentage

S
M

A
P

E

refine I
refine II
refine III

(c) Wind Data - 50% Real Data

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

number of real values

S
M

A
P

E

refine I
refine II

refine III
forecast

(d) Sales Data - 50% Sample

20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

sample percentage

S
M

A
P

E

refine I
refine II
refine III

(e) Sales Data - 50% Real Data

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

number of real values (percental)

S
M

A
P

E

sales+uniform
wind+uniform
wind+weights
sales+weights

(f) Uniform vs. Historical Ratios - 50%
Sample

Figure 6: Refine Experimental Results.

aggregate forecast. In contrast, refine III improves with a
higher sample size as we can retrieve a better estimate of
the forecast error.

We repeated the same experiment for the sales data set.
In Figure 6(d) the development of the forecast accuracy for a
50% sample with increasing number of real values is shown,
while Figure 6(e) shows the development of the forecast ac-
curacy with increasing sample size if 50% of the real data is
available. Here, refine I shows a very bad forecast accuracy,
while refine II and III behave very similar. For this data
set, our forecasts are quite accurate. Therefore, we can not
compensate any forecast error and refine III is even slightly
worse with a low number of real values. With increasing
sample size, refine II and III strongly improve as we can in-
clude more base forecast values to calculate the aggregate
forecast.

To conclude, with refine III we can capture a probably
systematic error and result in a higher accuracy than refine
I and refine II. If the forecasts are quite accurate, we retrieve
a similar accuracy than refine II.

Refine with historical ratios shows the same characteris-
tics as uniform refine in general. Therefore, in a last experi-
ment we only compare uniform refine and refine with histor-
ical ratios (Figure 6(f)). We display the forecast accuracy
of both data sets (wind and sales) for the two approaches

(uniform and weights) with increasing number of real val-
ues using a 50% sample of forecast values. For both data
sets, refine with historical ratios shows a better accuracy
and convergence than uniform refine. We can see a higher
improvement for the sales data set than the wind data set
as all base time series of the wind data set have a similar
contribution to the aggregate series.

6.5 Configuration
In this section, we compare the best uniform sampling

from Subsection 6.3 with weighted sampling. For weighted
sampling, we used the historical ratios as weights (Equation
18) as well as the in-sample model error (Equation 19). We
again measured the SMAPE of the approaches for different
sample sizes.

We first show the results of the synthetic data set (Figure
7(a)). For the forecast with random error, we can only see
a small improvement of weighted sampling (rand+weights
and rand+error) over uniform sampling (rand+us). Due to
a uniform distribution of the historical ratios, our uniform
sampling approach already performs quite well and we only
yield a small improvement using weighted sampling with
historical ratios. As the model errors are also uniform dis-
tributed, the weighted sampling approach using the errors
itself leads to a small improvement as well.

For the forecasts with systematic error we can see that

20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

sample percentage

sm
ap

e sys+us
sys+weights
sys+error
rand+us
rand+weights
rand+error

(a) Synthetic Data

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

sample percentage

sm
ap

e

us
ws+weights
ws+error
agg
base

(b) Sales Data

Figure 7: Configuration Experimental Results

uniform (sys+us) and weighted sampling with historical ra-
tios (sys+weights) perform equally. Both sampling schemes
already reach the minimum possible error with small sample
sizes as the systematic errors are distributed equally. The
error of the weighted sampling approach using the errors as
weights (sys+errors) increases with increasing sample size.
The reason is that all forecasts have a systematic error. If we
first choose the forecasts with a small error and estimate the
total aggregate from those, we actually propagate a smaller
error to the total aggregate and hence reach a better accu-
racy with a smaller sample size.

The experimental results for the sales data set is shown in
Figure 7(b). Our weighted sampling scheme with the histor-
ical ratios (ws+weights) leads to good improvement over the
uniform sampling approach (us). With a sample size higher
than 10% we reach a better accuracy than a model over the
aggregate time series. The weighted sampling scheme with
the in-sample errors as weights(ws+errors) further improves
the result. Similar to our synthetic data set, for certain sam-
ple sizes, we can even see a better accuracy with a sample
of base models compared to using all base models.

7. RELATED WORK
Related work can be found in three main areas: (1) ap-

proximate query processing, (2) existing approaches to inte-
grate forecasting in database management systems and (3)
hierarchical forecasting studies in forecasting literature.

Approximate Query Processing Sampling based
methods have been used in a wide variety of scenarios in
databases, such as query selectivity estimation in query op-
timization, providing sampling as a relational operation, and
approximate query processing [24]. Our work is probably
most related to the area of approximate query processing.
Current research focuses on online techniques [20] as well
offline techniques [8, 15]. For example, Ganti et. al. have
developed a weighted sampling schemes that exploits work-
load information (i.e., query frequency) to continuously tune
a representative sample of the data [15]. However, our work
differs in two main points. First, we want to approximately
process forecast queries that already provide approximate
answers. Thus, with a sample of forecast values we can still
provide the same accuracy as using all forecast values. Sec-
ond, we deal with the approximate aggregation of time series

values, while current research focuses on single values. This
gives us the unique possibility of including the history of the
time series to improve the estimate.

Forecasting in DBMS Recent research has addressed
the integration of time series forecasting inside a DBMS.
Within the Fa system [10] an incremental approach is pro-
posed to build models for a multidimensional time series in
which more attributes are added to the model in successive
iterations. Furthermore, the skip-list approach for efficient
forecast query processing [16] proposes an I/O-conscious
skip list data structure for very large time series in order
to enable the determination of a suitable history length for
model building. However, all approaches investigate how to
efficiently find the best forecast model for one specific fore-
cast query using database techniques. They do not address
the aggregation of models or the refinement of forecasts if
new values arrive asynchronously. Agarwal et al. address the
problem of forecasting high-dimensional data over trillions
of attribute combinations [4]. They propose to store and
forecast only a sub-set of attribute combinations and com-
pute other combinations from those using high-dimensional
attribute correlation models. In contrast to our approach,
they calculate several forecasts from one base model using
disaggregation, while we calculate one forecast from several
base models using sampling to provide a higher accuracy.

Hierarchical Forecasting The aggregation challenge
was also examined in specific forecasting and economic lit-
erature [14, 11, 26]. Different studies examined the perfor-
mance of bottom-up approaches (base time series forecasts
are made directly and aggregated to get higher level fore-
casts) and top-down approaches (forecasts are made at ag-
gregate level and then allocated to lower levels). Influencing
factors of the superiority of one approach over the other were
investigated, e.g., quality of forecast method, correlation be-
tween variables and forecast errors [6]. However, all studies
only consider complete aggregation and do not address the
possibility of aggregation over time series samples.

Gross and Sohl published 21 disaggregation methods [18]
that can be used to scale down an aggregate forecast in
order to retrieve a base time series forecast. They analyzed
simple approaches that use the last available value or the
average over the whole historical time series as well as more
complex approaches that additionally consider correlation

of past values. They came to the conclusion that simple
approaches work best. We reused the idea of disaggregation
weights in order to obtain better estimates of the aggregate
forecast. For this, we proposed a new combined method of
that also uses information about the seasonality of the data.

8. CONCLUSIONS
The integration of forecasting inside a DBMS is a rising

topic in the research community. In this paper, we addressed
the optimization of aggregation forecast queries. We dis-
cussed how to calculate an aggregate forecast from just a
sample of base forecasts and how to refine the aggregate
forecast if new real values arrive asynchronously. In our
experimental evaluation, we have shown that with a small
sample of base forecasts, we can reach a higher accuracy
than a forecast provided by an aggregate model. As a data
warehouse usually contains a high number of aggregation
possibilities, we can save aggregate models and use an avail-
able sample of base models to answer ad-hoc aggregation
queries without loosing any or only a little accuracy.

The proposed approach is in its initial version so that there
is still room for improvement. First, the current approach
can be extended to support other aggregation functions (e.g.,
maximum, variance, quantiles). Different estimators have to
be developed that calculate and refine the aggregate forecast
value. Secondly, we began to discuss how to design a sample
of base time series to increase the accuracy of an aggregate
forecast. This might be extended to multiple aggregation
hierarchies, where one base time series can contribute to
several aggregate time series. Finally, we want to explore
how our results can be applied to the area of online aggre-
gation, where an initial result is provided very fast and then
successively refined over time.

Acknowledgment
The work presented in this paper has been carried out in
the MIRABEL project funded by the EU under the grant
agreement number 248195.

9. REFERENCES
[1] Tourism Research Australia - National Visitor Survey,

2012. http://www.ret.gov.au/tourism/research/
tra/Pages/default.aspx.

[2] US EIA - International Energy Statistics, 2012.
http://tonto.eia.doe.gov/cfapps/ipdbproject/

IEDIndex3.cfm?tid=2&pid=2&aid=2.

[3] Wind Integration Datasets, 2012.
http://www.nrel.gov/wind/integrationdatasets/.

[4] D. Agarwal, D. Chen, L. Lin, J. Shanmugasundaram,
and E. Vee. Forecasting high-dimensional data. In
SIGMOD, 2010.

[5] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and
S. Zdonik. The case for predictive database systems:
Opportunities and challenges. In CIDR, 2011.

[6] A. Barnea. An analysis of the usefulness of
disaggregated accounting data for forecasts of
corporate performance. Decision Sciences, 11:17–26,
1980.

[7] G. Box, G. Jenkins, and G. Reinsel. Time Series
Analysis: Forecasting and Control. Wiley, 2008.

[8] S. Chaudhuri, G. Das, and V. Narasayya. Optimized
stratified sampling for approximate query processing.
In TODS, 2007.

[9] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. Mad skills: New analysis practices for big
data. In VLDB, 2009.

[10] S. Duan and S. Babu. Processing forecasting queries.
In VLDB, 2007.

[11] D.M. Dunn, W.H. Williams, and T.L. DeChaine.
Aggregate versus subaggregate models in local area
forecasting. Journal of the American Statistical
Association, 71:68–71, 1976.

[12] U. Fischer, M. Böhm, and W. Lehner. Offline design
tuning for hierarchies of forecast models. In BTW,
2011.

[13] U. Fischer, F. Rosenthal, and W. Lehner. F2db: The
flash-forward database system (demo). In ICDE, 2012.

[14] G. Fliedner. Hierarichal forecasting issues and use
guidelines. Industrial Management & Data Systems,
101:5–12, 2001.

[15] V. Ganti, M. L. Lee, and R. Ramakrishnan. Icicles:
Self-tuning samples for approximate query answering.
In VLDB, 2000.

[16] T. Ge and S. Zdonik. A skip-list approach for
efficiently processing forecasting queries. VLDB, 2008.

[17] J. G. D. Gooijer and R. J. Hyndman. 25 years of time
series forecasting. International Journal of
Forecasting, 22:443–473, 2006.

[18] C. W. Gross and J. E. Sohl. Disaggregation methods
to expedite product line forecasting. Journal of
Forecasting, 9:233–254, 1990.

[19] M. Hanif and K. Brewer. Sampling with unequal
probabilities without replacement: A review.
International Statistical Review, 48:317–335, 1980.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. 1997.

[21] D. Horvitz and D. Thompson. A generalization of
sampling without replacement from a finite universe.
Journal of the American Statistical Association,
47(260):663–685, 1952.

[22] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and
S. Grose. A state space framework for automatic
forecasting using exponential smoothing methods.
International Journal of Forecasting, 18, 2000.

[23] S. Makridakis and M. Hibon. The M3-Competition:
results, conclusions and implications. International
Journal of Forecasting, 16:451 – 476, 2000.

[24] F. Olken. Random sampling from databases, 1993.

[25] F. Rosenthal and W. Lehner. Efficient in-database
maintenance of arima models. In SSDBM, 2011.

[26] A. Zellner and J. Tobias. A note on aggregation,
disaggregation and forecasting performance. Journal
of Forecasting, 19:457–469, 2000.

