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Abstract. Integrating sophisticated statistical methods into database
management systems is gaining more and more attention in research
and industry. One important statistical method is time series forecast-
ing, which is crucial for decision management in many domains. In this
context, previous work addressed the processing of ad-hoc and recur-
ring forecast queries. In contrast, we focus on subscription-based forecast
queries that arise when an application (subscriber) continuously requires
forecast values for further processing. Forecast queries exhibit the unique
characteristic that the underlying forecast model is updated with each
new actual value and better forecast values might be available. However,
(re-)sending new forecast values to the subscriber for every new value is
infeasible because this can cause significant overhead at the subscriber
side. The subscriber therefore wishes to be notified only when forecast
values have changed relevant to the application. In this paper, we reduce
the costs of the subscriber by optimizing the notifications sent to the
subscriber, i.e., by balancing the number of notifications and the noti-
fication length. We introduce a generic cost model to capture arbitrary
subscriber cost functions and discuss different optimization approaches
that reduce the subscriber costs while ensuring constrained forecast val-
ues deviations. Our experimental evaluation on real datasets shows the
validity of our approach with low computational costs.

1 Introduction

Empirically collected data constitutes time series in many domains, e.g., sales
per month or energy demand per minute. Forecasting is often applied on these
time series in order to support important decision-making processes. Sophis-
ticated forecasts require the specification of a stochastic model that captures
the dependency of future on past observations. We will refer to such models
as forecast models. The creation of forecast models is typically computationally
expensive, often involving numerical optimization schemes to estimate model
parameters. Once a model is created and parameters are estimated, it can effi-
ciently be used to forecast future values, where the forecast horizon denotes the
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Fig. 1. Overview Subscription-Based Forecast Queries.

number of requested forecast values. As new data arrives, the forecast model
requires maintenance and improved forecast values might be obtained.

Integrating advanced statistical methods into database management systems
is getting more and more attention [1]. These approaches allow for improved per-
formance and additional functionality inside a DBMS. Research on integrating
time series forecasting has mainly focused on accuracy and efficiency of ad-hoc
[7] and recurring forecast queries [8, 9]. However, applications might continu-
ously require forecast values in order to do further processing. Forecast queries
incorporate the unique characteristic that they can provide an arbitrary number
of forecast values. However, with each new actual value the underlying model is
updated and better forecasts might be available. A dependent application could
obtain these values by repeatedly polling from the database. This is very in-
efficient if forecasts have changed only marginally, especially if the application
executes a computational expensive algorithm based on the received forecasts.

In order to tackle this problem, we introduce the concept of subscription-
based forecast queries that may be seen as continuous forecast queries associated
with constraints guiding notifications to the subscriber. A general overview of
our approach is shown in Figure 1. A subscription-based forecast query regis-
ters at the database system given various parameters, e.g., the time series to
forecast, a continuous forecast horizon and a threshold of acceptable forecast
deviations. For example, the simple forecast query in Figure 1 requests forecasts
of customer energy demand for the next two steps (two forecast values) with
a threshold of 10%. The database system itself stores time series data as well
as associated forecast models and automatically manages these models [8]. As
time proceeds and new time series values arrive models are updated and op-
tionally maintained by the DBMS. This results in better forecast values leading
to notifications sent to the subscriber that contain at least the forecast horizon
specified by the subscriber (further denoted as notification length). For our ex-
ample query, a notification needs to be sent if new forecasts are available that
deviate by more than 10% from old forecasts sent before. The subscriber pro-
cesses all notifications, where the processing costs of the subscriber often depend
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Fig. 2. Influence of Notification Length.

on the notification length. These subscriber costs can be communicated to the
database system to optimize future notifications.

One important use case of notification-based forecast queries can be found in
the energy domain. Forecasting is crucial for modern energy data managements
(EDM) systems to plan renewable energy resources and energy demand of cus-
tomers. In this use case, the EDM system subscribes at a forecasting component,
e.g., the DBMS, to receive forecasts on a regular basis. These forecasts are used
to balance demand and supply and are crucial to reduce penalties paid for any
kind of imbalances, i.e., remaining differences between demand and supply [2, 13,
17]. It is important to update the EDM system just with significant new forecast
values to ease the computational expensive job of energy balancing.

Therefore, our objective in this paper is the reduction of the processing costs
of the subscriber by trading the number of notifications against the notification
length. We distinguish two extreme cases (Figure 2). On the one hand, we can
choose a short notification length (i.e., a short forecast horizon). With this ap-
proach, we achieve a low forecast error, but we need to send notifications more
frequently (as we deal with continuous queries). On the other hand, we can
choose a large notification length, resulting in much less notifications, but in a
high error for forecasts far from current time. Both extreme cases result in a high
overhead at the subscriber side. This first one requires repeatedly processing new
notifications, the second one needs to process very long notifications as well as
reprocess many notifications containing improved forecasts. To solve this prob-
lem, we need to increase the notification length just as far as to ensure accurate
forecasts that require a small number of notifications. This poses an important
but challenging optimization problem of reducing the costs of the subscriber.

Contributions and Outline Our primary contribution is the introduction
of the concept of subscription-based forecast queries, which include a parameter
definition, processing model, cost model and optimization objective (Section 2).
Then, in Section 3, we propose different computation approaches to minimize
the costs of the subscriber according to our optimization objectives defined in
Section 2. Our experimental study (Section 4) investigates the performance of
the computation approaches, the influence of subscription parameters, the com-
putational costs of our approach as well as the validity of the cost model using
real-world datasets. Finally, we survey related work in Section 5 and conclude
in Section 6.
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2 Foundations of Subscription-Based Forecast Queries

In this section, we set the foundations of subscription-based forecast queries. We
start with discussing the parameters of such a query (Section 2.1), followed by
introducing our general processing model that leads to two different kind of noti-
fications to the subscriber (Section 2.2). We then explain our cost model, which
captures the costs of the subscriber depending on the number of notifications
and the notification length (Section 2.3). Finally, we sketch out our optimization
objective of reducing the overall subscriber costs (Section 2.4).

2.1 Forecast-Based Subscriptions

We start with defining the parameters of subscription-based forecast queries.

Definition 1 (Forecast-Based Subscriptions) A forecast-based subscription
S = (X,h, α,w, g, kmax) consists of a time series description X, a minimum
continuous forecast horizon h, a threshold α, an aggregation window w, an ag-
gregation function g and a maximum horizon extension kmax.

The time series description X = x[1,t] can be an arbitrary SQL query that
specifies the time series to forecast [8]. The continuous forecast horizon h specifies
the minimum number of forecast values x̂[t+1,t+h] and implies that at each time
t, the subscriber holds at least h forecast values. In addition, each subscription
specifies a relative threshold α. At time t, we must notify the subscriber with
new forecast values if these new forecast values x̂[t+1,t+w] deviate more than α
from the old values sent to the subscriber, using a window w and aggregation
function g. Examples for aggregation functions are mean (average deviation in
window above threshold) or max (maximum in window above threshold), where
the decision depends on the intended sensitivity to deviations.

Example 1 Figure 3 shows a real-dataset example. A forecast model was created
up to time t = 0, using the triple seasonal exponential smoothing model [19]. The
solid line displays forecast values x̂[1,96] created at time t = 0 with a horizon of
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Fig. 4. Processing Forecast-based Subscriptions.

h = 96. At each time step t + i with i > 0 new real data arrives and we can
update the forecast model. At time t = 24, we can create new forecast values
x̂[25,96] that capture the history better and now slightly differ from the original
ones (line with crosses). A subscriber wants to be notified whenever new forecast
values deviate by more than 10% from the old ones (dashed lines). We see that
at time t = 24 some forecast values x̂[25,96] are outside this threshold. Using an
aggregation window of w = 72 and the aggregation function max we would need
to send a notification.

Finally, the maximum horizon extensions kmax is specific to our processing
model and thus explained in the following.

2.2 Processing Model

At subscription registration time, we send at least h forecast values to the sub-
scriber. From that point in time, notifications are caused by one of the following
two reasons. First, new forecast values are sent whenever the subscriber has less
than h forecast values (horizon violation Ht), where we need to send at least
the missing values. However, we can additionally send k values—the horizon
extension—in order to avoid a lot of horizon violations. There, the subscriber
specifies the maximum number of additional forecast values kmax. Second, we
send a notification if the threshold is violated at time t (threshold violation Dt).
In this case, we consider all sent forecast values as invalid and we resend forecast
values with a horizon h plus the horizon extension k. A different approach might
be to resend only values that violate the threshold. However, this might lead to
systematic errors since forecast values are often based on each other.

Example 2 Figure 4 shows an example subscription. At time t = 0, we create a
subscription S = (X,h, α,w, g, kmax) with minimum horizon h = 6. The horizon
extension is set to k = 2. Initially, we send a notification m0 with h + k =
6 + 2 = 8 forecast values. At time t = 3, the subscriber has only h − 1 = 5
forecast values (horizon violation H3). Hence, we send a notification m3 with
1 + k = 3 forecast values. We do not override sent values as these are still valid
(below the subscription threshold) but send missing values (one value plus k = 2
values). Then, at time t = 5, the subscriber threshold α is violated according to



the aggregation window w and function g (threshold violation D5). We send a
notification m5 with h+ k = 8 new values, which override all sent values.

We define the total number of sent values h + k or k + 1 as notification
length. The parameter k has high influence on the number of notifications and
individual notification lengths and therefore on the subscriber costs. If we set k
quite low, we send many notifications because the horizon is violated. Thus, the
subscriber needs to repeatedly process new forecast values leading to high costs.
If we set k quite high, the notification length increases and we need to resend a
lot of values if the threshold is violated. Thus, the subscriber needs to reprocess
many updated forecast values. In the next subsection, we introduce a cost model
that allows the quantification of this influence.

2.3 Cost Model

The subscriber cost function can be arbitrary and might be unknown. We there-
fore use this as a black box function, where we can retrieve the costs for arbitrary
notification lengths. Internally, this might be a known analytical function or ex-
isting techniques might be used to learn these costs online [18]. However, the
costs might be different for h + k new values (threshold violation) or k + 1 ad-
ditional values (horizon violation). Depending on the horizon h and the horizon
extension k, we distinguish two cost functions. First, FC denotes the costs of a
complete restart of the subscriber algorithm as necessary for threshold violations,
where all forecast values are resent. Second, FI denotes the costs of an incre-
mental version of the subscriber algorithm that is used for horizon violations,
where the subscriber only processes additional values.

These considerations lead to our cost model that calculates the costs between
two successive threshold violations Dt and Dt+i:

Definition 2 (Threshold Violation Costs) Assume a horizon extension k.
The costs in a threshold violation interval ∆D = (Dt, Dt+i) are defined as:

Ck,∆D = FC(h+ k) +

⌊
∆D

k + 1

⌋
· FI(k + 1). (1)

As explained before, whenever a threshold violation Dt occurs, we send h+k
values leading to complete costs of FC(h + k). Additionally, a certain number
of horizon violations occur until the next threshold violation Dt+i, each leading
to incremental costs of FI(k + 1). The number of horizon violations equals the
number of times k + 1 fits in the threshold violation interval ∆D as we send
notifications until the end of the interval. If k + 1 is smaller or equal than ∆D
no additional incremental costs occur.

Example 3 Consider again Example 2, the first threshold violation occurs at
D5, so according to our definition ∆D = 4. In this interval, we require once
complete costs FC(h+ k) at the start of the interval and once (b4/(2 + 1)c = 1)
incremental costs FI(k) until the threshold violation D5. At D5 a new threshold
violation intervals begins, which again starts with complete costs.
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The total costs Ck,∆D in one threshold violation interval strongly depend on
the subscriber cost functions FC and FI .

Example 4 Figure 5 illustrates the influence of different cost functions. It shows
the theoretical costs according to different horizon extensions k for a fixed min-
imum horizon h = 24 and threshold violation interval ∆D = 44. We used three
different cost functions: constant (150), linear (64x + 150) and quadratic (x2),
where the same cost function is applied for FC and FI . For a quadratic cost
function, long notifications are very expensive, so it is best to send many small
notifications (k = 0). If the cost function only contains setup cost (constant),
the goal is to reduce the number of notifications. Hence, we would choose the
highest possible horizon extension in order to avoid any horizon violation. The
linear function shows a possible cost function between these two extremes. The
dips in the linear cost function arise when k + 1 is a divisor of ∆D. Thus, all
horizon violations fit exactly in the interval and no values are sent unnecessary.

The threshold violation costs formula makes the simplifying assumption that
the threshold violation interval ∆D and the horizon extension k are independent
of each other. This might not always be the case as k influences the accuracy
of the forecast values and thus also the threshold violation interval. However,
preliminary experiments have shown that the impact of k on ∆D is very low.

Based on the defined costs of a single threshold violation interval, we are now
able to calculate the total costs of a sequence of threshold violation intervals.

Definition 3 (Total Subscriber Costs) Assume a sequence of horizon ex-
tensions {k1, . . . , kn}. Then, the total costs of a sequence of threshold violation
intervals {∆D1, . . . ,∆Dn} is defined as:

Ctotal =

n∑
i=1

Cki,∆Di
. (2)

Thus, the best horizon extension depends on the cost function and frequency
of threshold violations, which leads to a hierarchy of optimization problems.



2.4 Optimization Problems

Our general optimization objective is to reduce the total subscriber costs with
regard to the introduced cost model. Furthermore, our optimization approach is
to choose the best horizon extension, which can be done for different time gran-
ularities (offline-static, offline-dynamic, online). This inherently leads to three
different optimization problems. These problems are independent of any compu-
tation approach and hence, presented separately. Furthermore, they are complete
in the sense that additional problems are conceptual composites of them.

The most coarse-grained problem is to choose a single horizon extension for
the whole time series, i.e., the sequence of threshold violation intervals (static).

Optimization Problem 1 (Offline – Static) Assume a sequence of thresh-
old violation intervals {∆D1, . . . ,∆Dn} and a maximum horizon extension kmax.
The objective is to minimize the total subscriber costs by choosing a single hori-
zon extension k:

φ1 : min
0≤k≤kmax

n∑
i=1

Ck,∆Di . (3)

For some datasets, we observe different average threshold violation intervals
at different time intervals, where a single horizon extension might fail. For ex-
ample, often energy demand during week days can be forecasted more accurate
than during weekend days, leading to more threshold violations at the weekend.
Hence, the second optimization problem is more fine-grained (dynamic) as it
aims to find a sequence of horizon extensions for a sequence of time slices.

Optimization Problem 2 (Offline – Time Slice) Assume a sequence of time
slices {∆T1, . . . ,∆Tm} and a sequence of threshold intervals {∆D1, . . . ,∆Dn},
where n ≥ m. Each ∆Di is assigned to exactly one ∆Tj, where lj is the to-
tal number of ∆Dis in time slice ∆Tj. The objective is to minimize the total
subscriber costs by choosing a sequence of horizon extensions {k1, . . . , km}:

φ2 : min
0≤kj≤kmax

m∑
j=1

lj∑
i=1

Ckj ,∆Di
. (4)

Finally, the most-fine-grained optimization problem is an adaptive online
formulation.

Optimization Problem 3 (Online) Assume a history of threshold violation
intervals {∆D1, . . . ,∆Dn}, horizon extensions {k1, . . . , kn} and related costs.
The objective is to minimize the total subscriber costs by choosing the next kn+1:

φ3 : min
0≤kn+1≤kmax

Ckn+1,∆Dn+1
. (5)

As the cost function is given by the subscriber or monitored, we ”only” need
to determine ∆D in order to calculate the best horizon extension. However,
∆D depends on many aspects, e.g., time series characteristics, model accuracy,
forecast horizon or subscription parameters. In reality, we do not know when
the next threshold violation occurs. However, we can analyze past threshold
violation intervals and use them to predict future threshold violations.



3 Computation Approaches

Regarding the defined optimization problems, we now discuss related compu-
tation approaches. As a foundation, we first present our general subscription
maintenance algorithm (Algorithm 1) as a conceptual framework for arbitrary
computation approaches. This includes two major procedures:

First, RegisterSubscriber is called when creating a new subscription S.
We first add the new subscription to the list of subscribers on the requested
forecast model (line 2). Such a forecast model is stored and maintained for each
time series with at least one subscriber. The type of the model (e.g., exponen-
tial smoothing) needs to be chosen by a domain expert or by using an heuristic
algorithm [10]. To store the list of subscribers itself, we use a simple array struc-
ture. However, more advanced data structure can be utilized if the number of
subscriber increases (e.g., [3]). Then, we start an analysis phase (line 3). In an
offline context, we evaluate single (static) or multiple (dynamic) horizon exten-
sions. In an online context, we only determine the initial horizon extension. For
all three cases, we implicitly interact over a callback interface—implemented
by each subscriber—to retrieve the costs FC and FI . Finally, we send the first
notification to the subscriber with h+ k forecast values (line 4).

Second, ProcessInsert is called when a new tuple is added to the time
series of the specific model. This requires updating the model to the current
state of the time series as well as optional maintenance in form of parameter
re-estimation (line 6). For this, we use a simple, but robust, time-based strategy
that triggers maintenance after a fixed number of inserts [9]. Then, for each
subscriber, we check if the threshold is violated over the aggregation window
(lines 8 - 12). If so, we adapt the next horizon extension according to the used
strategy (dynamic, online). Finally, we notify the subscriber with h + k new
forecast values. If no threshold violation occurred, we check if the horizon is

Algorithm 1 Forecast Subscription Maintenance

Require: model, subList, currentT ime
1: procedure RegisterSubscriber(S)
2: subList← add(subList, S)
3: analyzeK(S)
4: notify(predict(currentT ime, S.h + S.k))

5: procedure ProcessInsert(newtuple)
6: model← maintainModel(newtuple)
7: for S in subList do
8: pmodnew ← predict(S.w)
9: div ← calculateDiv(pmodnew, S.forecasts)

10: if div > S.threshold then
11: updateK(S)
12: notify(predict(currentT ime, S.h + S.k))
13: else if isHorizonViolated(S) then
14: notify(predict(currentT ime + S.h, S.k + 1))
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Fig. 6. Comparison of Computation Approaches.

violated and we notify the subscriber with the missing values plus the horizon
extension (lines 13 - 14). Here, the interaction with the subscriber is also done
via the callback interface.

The following computation approaches are based on two observations. First,
the best horizon extension in the past can be used to determine the best horizon
extension for the future. We therefore propose predictive approaches that analyze
the history of threshold violation intervals. Second, there is the problem that
threshold violation points strongly fluctuate and we would need to predict the
trend of prediction errors. We therefore focus on robust and simple approaches
rather than highly dynamic analytical approaches. Figure 6 shows an overview
of our computation approaches, which are discussed in the following.

Offline – Static. The first computation approach addresses the coarse-grained
Optimization Problem 1, where the objective is to choose a single horizon exten-
sion. The static approach determines one horizon extension during the analysis
phase of our general algorithm (line 3) and uses this during the whole lifetime of
a subscription (Figure 6(a)). To determine the horizon extension, we empirically
monitor the threshold violation points over the whole history of the time series.
For each tuple in the time series history, we execute an adapted version of the
procedure ProcessInsert (Algorithm 1), where we do not notify the subscriber
and just monitor whenever a threshold violation occurs. Given the resulting se-
quence of threshold violation intervals {∆D1, . . . ,∆Dn}, we calculate the costs
for different k’s using our cost model (Equation 2). This leads to functions such
as shown in Figure 5. Finally, we choose the k with minimum costs.

Offline – Time Slices (Dynamic). The second approach solves Optimization
Problem 2 to find a sequence of horizon extensions for a sequence of time slices.
This approach is beneficial if (1) the time series shows periodic patterns of thresh-
old violation intervals or (2) if the cost function periodically changes over time.
During the analysis phase (line 3), we determine a sequence of horizon exten-
sions for periodic time slices (Figure 6(b)). Whenever a threshold violation oc-
curs during execution (line 11), we set the next horizon extension to the horizon
extension of the current time slice. The computation approach is similar to the
static approach. We just additionally remember in which time slice the threshold



violation occurred and compute a separate horizon extension for each time slice.
To determine the granularity of the time slices, we either use domain knowledge
or we empirically evaluate different types of time slices.

Online Approach. This last computation approach solves Optimization Prob-
lem 3 of finding the best next horizon extension. An online approach is bene-
ficial if either the time series model evolves leading to different threshold vio-
lation points or the cost function evolves leading to changed costs FC and FI .
The online approach is repeatedly executed during the lifetime of a subscription
to determine the next horizon extensions (Figure 6(c)). At registration time,
we need to determine an initial k (line 3). This can be either some predefined
parameter or we can use our static approach. The main work is done in the
function updateK after each threshold violation, where we determine the next
horizon extension (line 11) online. Whenever a threshold violation occurs, we
monitor the associated ∆D over a predefined window. We then determine the
need for recalculating the horizon extension. We analyze two different strategies
to trigger recalculation within our experimental evaluation. If recalculation is
required, we again compute the costs for different horizon extensions using the
monitored sequence of ∆Ds and we choose the horizon extension with minimum
costs. This requires that the subscriber costs can be retrieved efficiently or we
have a (possibly changing) known analytical cost function. Otherwise, we adapt
the best k incrementally, i.e., by trying different ks and monitoring the resulting
costs.

Computational Costs. The costs of all three approaches depend on (1) the time
series length n, to evaluate the history of threshold violations, (2) the number of
possible horizon extensions m, to retrieve the subscriber costs, and (3) the num-
ber of threshold violations d that occur, as the total costs are calculated by the
sum over the cost of one threshold violation interval. For the offline approaches,
the number of threshold violations d is calculated over the whole history (n rep-
resents the whole time series length); for the online approach only the specified
window is used (n equals the window size). Following these considerations, the
time complexity of all approaches equals O(n+m · d).

4 Experimental Evaluation

We conducted an experimental study on three real world data sets to evaluate
(1) the performance (subscriber costs) of our approaches, (2) the influence of
subscription parameters, (3) the computational costs of our approach in relation
to the subscriber costs and (4) the validity of our cost model.

4.1 Experimental Setting

Test Environment: We implemented a simulation environment using the sta-
tistical computing software environment R. It provides efficient built-in forecast
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Fig. 7. Performance of Computation Approaches.

methods and parameter estimators, which we used to build the individual fore-
cast models. All experiments were executed on an IBM Blade (Suse Linux, 64bit)
with two processors (each a Dual Core Intel Xeon at 2.80 GHz) and 4 GB RAM.

Dataset Descriptions: We used three real-world energy demand and supply
datasets. The first dataset (UK ) includes energy demand of the United Kingdom
and is publicly available [14]. It consists of total energy demand data from April
2001 to December 2009 in a 30 min resolution. The second dataset (MER) was
provided by EnBW, a MIRABEL project partner. It contains energy demand
of 86 customers, from November 2009 to June 2010 in a 1 hour resolution. The
third dataset (NREL) is energy supply data in the form of the publicly available
NREL wind integration datasets [15]. It consists of aggregated wind data from
2004 to 2006 in a 10 min resolution.

Forecast Methods: For all datasets, we used triple exponential smoothing
with double or triple seasonality as forecast method [19]. This method is an ex-
tension of the robust and widely used exponential smoothing and is tailor-made
for short-term energy forecasting. We used three seasonalities (daily, weekly and
annual) for the UK and NREL datasets but only two seasonalities (daily and
weekly) for the MER dataset. We used the first 6 years for UK, 6 months for
MER and 2 years for NREL to train the forecast models. The remaining data
was used for forecasting and evaluation of our approaches.

4.2 Evaluation of Computation Approaches

In a first series of experiments, we analyze the performance of our three com-
putation approaches using fixed subscription parameters, i.e., h = 1 day, w =
12 hours, α = 0.15 and g = mean. For the subscriber cost function, we use the
linear function from Example 4.

Offline – Static: We start with comparing our static approach to näıve and
adaptive approaches [11]. The first näıve approach never sends more forecast val-
ues than requested (k = 0). The second näıve approach sends as many forecast
values as possible (k = kmax), where kmax = 3h. The adaptive approach is inde-
pendent of the time series history but reacts to notification events. It therefore is
a representative of an online approach. Obviously, if a notification occurred due



to a horizon violation, the horizon extension was too small. Hence, the adaptive
approach increases the horizon extension. In contrast, if a threshold violation
occurred, the horizon extension was too high and thus, the horizon extension
is decreased. We evaluated different strategies to increase/decrease the horizon
extension, where a simple strategy performed best that starts with k = 1 and
doubles or halves the horizon extension depending on the notification event.

Figure 7(a) shows the result of the four approaches for all three datasets.
As all datasets exhibit different total costs, we normalized the cost with the
estimated best cost if we would exactly know the threshold violation sequence.
We first notice that our static approach (S) always outperforms the two näıve
approaches (0 and 3h) and the adaptive approach (A). The reason is that the
static approach includes the subscriber cost function into optimization while the
other three approaches act independently from the subscriber costs. In addition,
we observe that the datasets exhibit different characteristics leading to different
performance of the näıve approaches. For the given subscription parameters, the
forecast values of the NREL datasets deviate fast from the old values, leading
to a small threshold violation interval on average and to a better performance
of small horizon extensions. In contrast, the forecast values of the other two
datasets are more accurate leading to larger optimal horizon extensions.

Offline – Dynamic (Time Slices): For our second computation approach
we only use the UK and NREL dataset as these datasets are long enough to
build meaningful time slices. We analyzed four kinds of time slices: quarter (Q),
month (M), weekday/weekend (W ), and day (D). Thus, we use different horizon
extensions for different time slices, e.g., for every quarter of the year. Figure 7(b)
shows the results in terms of the improvement over the static approach by sub-
tracting the estimated best costs and normalizing with the costs of the static
approach. For our best case, the UK dataset, all four time slice approaches lead
to an improvement over the static approach. We observe the highest improve-
ment for daily time slices, which cover the behavior of customers at different
days of a week. The NREL dataset does not contain a typical seasonal behavior.
It therefore represents a worst-case example and shows no improvement for all
four time slice approaches.

Online Approach: We now relax the assumption of static cost functions
and change these functions over time. We use the UK dataset and our linear
cost function, where we vary the slope of the cost function [10; 1,000]. Figure
7(c) shows the improvement of the different approaches over the static approach
for different numbers of workload shifts. A workload shift switches from the
maximum slope to the minimum slope and vice versa. We analyze two different
versions of the online approach. The first one recalculates the horizon extension
only if the cost function changes (online cost). The second online approach recal-
culates the horizon extension after every threshold violation (online threshold).
Both of our online approaches clearly outperform the adaptive approach that is
even worse than the static approach as it acts independently of the subscriber
costs. For no workload shifts, the static and online (cost) approach show exactly
the same performance as the online approach is never triggered. In contrast, the
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online (threshold) approach slightly improves the static approach. For higher
number of workload shifts, we yield high improvements over the static approach
because the static approach just determines one horizon extension at the begin-
ning. The online (cost) approach performs very similar to the online (threshold)
approach for this use case.

4.3 Influence of Subscription Parameters

In a second series of experiments, we investigate the influence of different sub-
scription parameters , i.e., h, α, w, and g. We again use a linear cost function
and set the parameters by default to h = 1 day, α = 0.15, w = 12 hours, and
g = mean. In the following, we vary one parameter at a time and examine the
influence on the best horizon extension k.

Increasing the threshold α leads to longer threshold violation intervals and
thus larger horizon extensions. There is a larger increase for the UK and MER
datasets than for the NREL dataset. Both data sets constitute more robust
forecast values than NREL leading to few threshold violations with high α.

Figure 8(b) shows the influence of the aggregation window w on the horizon
extension. We see a strong increase for the MER dataset, while the horizon exten-
sions for the UK and NREL datasets stay almost constant. This is caused by the
customer-level granularity of the MER dataset with many fluctuations. Longer
aggregation windows weaken this effect and lead to smaller horizon extensions.

Figure 8(c) shows the best k for the aggregation functions mean and max,
where it is consistently larger for mean (with w > 1). The UK and NREL dataset
show only slight differences, while the MER dataset has a larger difference in
the best horizon extension because there forecasts exhibit large fluctuations and
the use of max triggers threshold violation notifications immediately.

Note that we do not show an experiment for varying horizons as it does not
influence the threshold violation interval and thus the horizon extension.

To summarize, the impact of the subscription parameters on k depends
strongly on the dataset, which validates our approach of analyzing the time
series history to determine the best horizon extension.
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4.4 Computational Costs

In this section, we analyze the computational costs of our approach as well as
the overall relationship to the subscriber costs. For this experiment, we use a
real cost function from our major use case, the energy domain. This real cost
function includes runtime costs of the MIRABEL energy balancing approach [2]
and shows a super linear behavior with increasing forecast horizon. We again
fix the subscription parameters to h = 1 day, w = 12 hours and g = mean and
vary the subscriber threshold α. To determine the best horizon extension, we
use our static approach. Figure 9 shows the trade off between number of sent
(or received) notifications, the total resulting subscriber costs and the total time
to produce these notifications for all three data sets. Clearly, with increasing
threshold α the number of sent notifications decreases as forecasts can have a
larger deviation before a notification needs to be sent and thus the notification
length increases (Figure 9(a)). In conjunction, the subscribers costs decrease as
well as less notifications need to be processed (Figure 9(b)). The runtime of our
approach is nearly independent from the number notifications but depends on the
data set, i.e., length, granularity and general accuracy (Figure 9(c)). The MER
data exhibits the lowest runtime as it consists of hourly data over eight months.
In contrast, the NREL data set shows the longest runtime as it is available in a
10 min resolution and hard to forecast. We displayed the overall time to produce
all notifications to be comparable with the total subscriber costs. As it can be
seen the runtime of our approach is much lower than the total subscriber runtime
and thus the subscriber costs form the dominant factor. Note that the average
time to produce a single notification equals less than 10 ms for all data sets. This
time is measured in a local setting and includes forecast model maintenance,
subscription evaluation and sending a notification if required.

4.5 Cost Model Validation

Finally, we validate our cost model, where we use again the real world cost func-
tion described in the runtime experiments. To evaluate our cost model we divide
the MER data set into two parts of equal size (additionally to the training data
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used for creating the forecast models). On the first part we estimate the to-
tal subscribers costs using our cost model defined in Equation 2. On the second
part we measure the real subscribers costs for different notification lengths h+k.
Figure 10 shows the resulting total subscriber costs for three different kind of
queries with increasing complexity (Q1 - Q3), i.e., increasing balancing time.
Note that the minimum notification length is determined by the forecast hori-
zon, which is h = 1 day. For all three queries, our cost model is very accurate
for small notification lengths but deviates from the real costs with increasing
length. Small notification lengths result in many horizon violations, which are
simple to estimate as they are time dependent. With larger notification lengths
more threshold violations occurs, where our cost model can never achieve perfect
accuracy as we do not know the future. However, most importantly, for all three
queries, the minimum of the estimated and real costs are roughly the same lead-
ing to the same best horizon extension k. For the UK data set, our cost models
performs much better than for the MER data set as this time series, and thus
the threshold violation intervals, are easier to predict. In contrast, for the NREL
data set our cost model performs slightly worse than for the MER data set as
wind data is very fluctuating.

5 Related Work

Existing work has addressed the integration of time series forecasting into DBMS.
Approaches to increase speed and accuracy of ad-hoc [7] and recurring queries
[8, 9] have been proposed. The Fa system [7] also processes continuous forecast
queries. However, in contrast to subscription-based forecast queries no notifica-
tion conditions can be defined and new forecasts are provided in a regular time
interval, independently of the actual changes in forecasts.

The concept of notifying users about incoming events generated by data
sources has been intensively investigated in the area of publish-subscribe systems
[12, 3]. Probably mostly related to our approach is the work on value-based
subscriptions [3]. There, the subscriber wishes to receive an update if a new
value (e.g., price) differs from the old one by more than a specified interval. The



propose different index structures to scale to a large number of subscribers. In
contrast, we need to notify the subscriber with multiple values and our focus is
the reduction of the costs of the subscriber.

The problem of tracking a value over time is more generalized in the area
of function tracking [5, 20]. An observer monitors a—possibly multi-valued—
function and keeps a tracker informed about the current function value(s) within
a predefined distance. Yi and Zhang [20] also suggest to use predictions in order
to further reduce communication costs. Our work differs in the sense that we
already deal with predictions of arbitrary horizons. Hence, in addition to the
number of notifications, we reduce the individual notification lengths in terms
of the number of forecast values.

The usage of statistical models to reduce communication between two or more
entities is applied in a wide range of areas, e.g., sensor networks [6], bounded
approximate caching [16] or mobile objects [4]. For example, within sensor net-
works energy requirements as well as query processing times are reduced by
utilizing statistical models in combination with live data acquisition. In the area
of bounded approximate caching, cached copies of data are allowed to become
out of date according to specified precision constraints. However, all these ap-
proaches significantly differ from our problem statement and solutions. First,
we consider only time series data, where future values depend on past ones,
requiring different statistical models. Second, we use statistical models to esti-
mate future values of the time series instead of missing real values, which leads
to specific notification conditions (horizon- and threshold-based) and notifica-
tion characteristics (resend all values or only additional ones). Finally, instead
of reducing the communication costs between the entities, we reduce the costs
of applications that process the forecast values.

6 Conclusion and Future Work

We introduced the concept of subscription-based forecast queries. Their main
characteristic is a twofold notification condition: horizon- and threshold-based.
This results in two different goals of increasing the notification length to avoid
horizon-based notifications and reducing the notification length to avoid resend-
ing a lot of values if a threshold-based notification occurs. In this paper, we
focused on optimizing these notifications to reduce the costs of the subscriber.
We developed different computation approaches for different optimization prob-
lems, which all use the time series history to determine a suitable notification
length. Our experimental evaluation shows the superiority of our computational
approaches over alternatives, a significant reduction of the subscriber costs with
low computational overhead as well as the validity of our cost in real world sit-
uations. In future work, we plan to extend our initial system and discuss data
structures and processing approaches to handle a large number of subscribers.
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