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Abstract. Forecasting is an important analysis technique used in many
application domains such as electricity management, sales and retail and,
traffic predictions. The employed statistical models already provide very
accurate predictions, but recent developments in these domains pose new
requirements on the calculation speed of the forecast models. Especially,
the often used multi-equation models tend to be very complex and their
estimation is very time consuming. To still allow the use of these highly
accurate forecast models, it is necessary to improve the data processing
capabilities of the involved data management systems. For this purpose,
we introduce a partitioning approach for multi-equation forecast models
that considers the specific data access pattern of these models to optimize
the data storage and memory access. With the help of our approach
we avoid the redundant reading of unnecessary values and improve the
utilization of the CPU cache. Furthermore, we utilize the capabilities of
modern multi-core hardware and parallelize the model estimation. Our
experimental results on real-world data show speedups of up to 73x for
the initial model estimation. Thus, our partitioning and parallelization
approach significantly increases the efficiency of multi-equation models.
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1 Introduction

Forecasting is used as the basis for decisions in many application areas such as
electricity management, sales and retail, and, traffic predictions. Due to recent
developments in these domains the employed statistical models face additional
challenges and requirements. Typically the available time for estimating the mod-
els and providing accurate predictions is significantly decreasing, which requires
more efficient data processing capabilities in the employed data management
systems. In the energy domain, for example, the emerging smart grid technology
and the integration of more renewable energy sources (RES), require real-time
? The author is currently visiting IBM Almaden Research Center, San Jose, CA, USA.
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capabilities for balancing the energy demand and supply. Research projects such
as MIRABEL [1], and MeRegio [2] address the issues of real-time energy bal-
ancing and improved utilization of RES by introducing new developments like
dynamic price signals, special energy storage, and demand-response systems. A
fundamental prerequisite for current approaches in this area including the bal-
ancing of energy in real-time is the availability of accurate forecasts at any time.

Forecasting employs mathematical models—known as forecast models—that
model the behavior and development of historic time series. The most important
classes of forecast models are autoregressive models [3], exponential smoothing
models [4] and models that apply machine learning [5]. Most models use a num-
ber of parameters to express specific characteristics of the time series such as
seasonal patterns or trends. These parameters are adapted to the specifics of a
time series by estimating them on a training data set, with the goal to minimize
the forecast error that is measured in terms of an error metric. Typically, each
domain exhibits specific characteristics of their time series and thus, employs
tailor-made forecast models that address these characteristics. With respect to
energy demand time series, e.g., we observe three typical seasonal patterns for
the day, the week (working days, weekend) and the year (summer, winter). While
our approach can be applied to several application domains, for the remainder
of this paper we use the energy domain as a running example.

A model class that is often used for forecasting time series with seasonal be-
havior comprises multi-equation forecast models [6,7,8,9]. In contrast to typical
single-equation models that use just one equation to describe the complete time
series behavior, multi-equation models apply an individual sub-model for each
specific time period within a selected season, often the daily season (e.g., one
model every 30min). This partitioning of the forecast model allows each sub-
model to describe a simpler behavior of the time series, compared to describing
all seasonal patterns in one equation. However, the trade-off for using multi-
equation forecast models is that now multiple sub-models must be estimated,
with each sub-model exhibiting a multi-dimensional search space that exponen-
tially increases with the number of parameters. This leads to higher efforts for
the estimation process that typically comprises a large number of iterations per
model. In addition, changing time series characteristics caused by continuously
available new measurements require the adaptation of forecast models, which
typically involves the re-estimation of all model parameters. The re-estimation
is almost as expensive as the initial model estimation and thus, very time con-
suming, especially when using multi-equation models. This clearly contradicts
to the requirements given by the real-time balancing.

To still allow the use of highly accurate multi-equation models in the face
of real-time environments, it is necessary to optimize their calculation efficiency
and thus, decrease the time needed for the model adaptation. One direction to
overcome that performance bottleneck is to exploit modern hardware architec-
tures. In this context, we observe two major characteristics. First, modern multi-
core hardware systems offer a steadily increasing degree of parallelism, since the
performance gain from increasing the core frequency is limited by physical con-
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straints such as an increasing heat loss and power consumption. Second, with
an increasing amount of available main memory, it is possible to store and pro-
cess all considered data directly within the main memory and thus, to avoid
reads from the hard disk. However, access times and bandwidth of the main
memory do not increase as fast as the computational power, for what reason
memory latency and bandwidth became new limiting factors for the reachable
performance [10,11]. Thus, to reduce the influence of the memory latency it is
important to optimize the data locality within the main memory and store the
data for sequential reading instead of random access. As shown in existing work,
the performance of algorithms and software greatly benefits from specifically
adapting their data storage and memory access to such hardware characteristics
[12]. For this purpose, we present an optimization approach that utilizes the spe-
cific time series access pattern of multi-equation forecast models to optimize the
data storage with respect to modern hardware. With the help of this framework,
we provide for each sub-model only the data it needs for its own calculations and
avoid accessing unnecessary information. In addition, our approach optimizes the
data locality and cache utilization, which greatly improves the data processing
speed. In addition, we utilize the increasing parallelization capabilities of mod-
ern multi-core hardware systems and parallelize the parameter estimation of the
involved sub-models. This helps us to further speed-up the parameter estima-
tion and to meet the requirements posed by real-time environments. The paper
makes the following contributions:

– First, we describe the background of multi-equation models in Section 2.
– Second, we present our partitioning approach that optimizes the data storage

with respect to the access pattern of multi-equation models in Section 3.
– Third, we describe parallelization strategies that exploit model inter-simi-

larities to estimate all sub-models in parallel in Section 4.
– Fourth, we present the results of our evaluation that show significant speed-

up for the parameter estimation of multi-equation models in Section 5.
– Finally, we present related work in Section 6 and conclude the paper in

Section 7.

2 Background of Multi-Equation Forecast Models

There are two typical model classes used for forecasting, namely single-equation
and multi-equation models. Single-equation models describe the complete time
series behavior including all patterns and seasonalities within one equation. This
means that they consider the most recent predecessor values from the time series
as the basis for their calculation. In addition, they use further information like
seasonal values or external information (e.g., weather) to increase the forecast
accuracy. The example presented in Figure 1(a) considers the five most recent
values from the time series plus the respective value at the same time one day
and one week ago. Popular examples of single-equation models are Box-Jenkins
Models (e.g., ARMA, SARIMA) [3] and adaptations of exponential smoothing
(e.g., like introduced by Taylor et al. [13]).
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(a) Single-Equation Model
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(b) Multi-Equation Model

Fig. 1. Considered Values of Single-Equation and Multi-Equation Models.

In contrast to single-equation models, multi-equation models avoid the mod-
eling of complex seasonal patterns by decomposing the forecast model and assign-
ing individual sub-models to each time period within a selected season. There,
each sub-model is a separate instance of the forecast model equation, with indi-
vidual values for the comprised parameters. In the energy domain, well known
representatives of this model class are the EGRV forecast model [6], first order
stationary vector regression from Cottet and Smith [7] and, the PCA based fore-
casting method from Taylor and McSharry [8]. The reason for splitting up the
forecast model with respect to a seasonal pattern is to ease the time series behav-
ior a sub-model has to describe and thus, to increase the forecasting accuracy.
The underlying assumption is that successive time series values corresponding
to a specific time differ only slightly from season to season. Thus, the current
time series value is very similar to previous time series values at the same time.
In the energy domain, typically the models are divided with respect to the daily
season, leading to the assignment of separate sub-models to each data point
within a day. For data in hourly granularity this means that for each hour a
specific sub-model is used. Some multi-equation models also consider more than
one season in their partitioning. The EGRV model, for example, also considers
the weekly season by assigning separate models to weekends and working days
in addition to the hourly models. It is important to note that the assignment
of individual sub-models to specific time frames limits the use of multi-equation
models to time series with equidistant data points. However, this is in line with
most forecast models, which generally also require equidistant observations.

When predicting future values, each sub-model calculates a value for the next
day that corresponds to its assigned time frame. Thus, to provide a complete
one-day-ahead forecast, each sub-model produces exactly one value. Other than
single-equation models, the sub-models base their calculation on historic values
from their respective time frames; the 8:00 am sub-model, for example, considers
historic values that correspond to 8:00 am. However, some additional components
like for example lagged error values, might still use values from other time frames.
Figure 1(b) illustrates the pattern of the considered values for the sub-models
at 3:00 am, 12:00 noon and 6:00 pm. This is also the specific time series access
pattern we exploit for a more efficient physical data partitioning.
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Fig. 2. Multi-Equation Model Optimization Process.

An example sub-model of the EGRV forecast model is shown in Equation 1:

Hour1 = αDeterministic+ βTemperature+ γLoad8+ δLags
Lags = δ1yt−24 + δ2yt−48 + δ3yt−72 + δ4yt−96 + δ5yt−120.

(1)

There, the Deterministic variables represent additional calendar information and
are included as dummy variables (value 0 or 1). Typically they do not require to
read time series values. Variables from the Temperature category use values from
an external temperature time series. In this paper, we do not separately describe
the handling of this external information, since our partitioning approach works
analogous for such time series. The variables named as Load8 represent a specific
aspect of the EGRV model and correspond to the load at 8:00 am on the previous
day. Finally, the Lags variables represent the last five time series values that
correspond to the specific time of each sub-model (e.g., tx−24, tx−48, tx−72, etc.).

3 Partitioning for Multi-Equation Forecast Models

The core idea underlying our approach is to physically partition the time series
in a way that reflects the model partitioning of the multi-equation model. For
this purpose we employ the process illustrated in Figure 2. There, we first par-
tition the data and assign each data partition to its corresponding sub-model.
Therefore, we ensure that each model physically accesses only the portions of the
time series it needs for its own calculations. This avoids the constant scanning
of unnecessary additional values and thus, significantly increases the calculation
speed of the complete model. In addition, modern multi-core hardware systems
offer an increasing amount of parallelism that we exploit by estimating the in-
volved sub-models in parallel. This is done in the second part of the process.
As we assume a larger number of models compared to the number of available
threads, we also optimize the thread assignment of these models. The idea is to
use similarities between the sub-models and exploit the parameters estimated
for one model as the input for the estimation of the successive model. The goal
is to reduce the number of iterations until the optimization algorithm converges.
As a last step we execute the parallel parameter estimation for all sub-models.

The estimation of forecast model parameters is typically conducted using
local (e.g., gradient descent, L-BFGS-B) or global search algorithms (e.g., Sim-
ulated Annealing). This optimization task involves a large number of iterations,



6 Partitioning and Parallelization of Multi-Equation Models

t-‐2	   t-‐3	   t-‐4	   t-‐5	   t-‐8	   t-‐9	   t-‐10	   t-‐11	   t-‐25	   t-‐26	   t-‐27	   t-‐28	   t-‐49	   t-‐50	   t-‐51	   t-‐52	  
Scan	  

… … 

M16 

M14 

… t-‐1	  

Load8	  day1	  

6:00pm	  

Determinis>c	  

DoW	  
MoY	  

Holiday	  

… t	  

day1	   day2	   day3	  

Fig. 3. Initial Sub-Model Time Series Access.

where each iteration requires to read all necessary time series values. With
respect to single-equation models this means that the complete time series is
scanned to evaluate the error of the chosen parameter combination. For multi-
equation models different parameters are assigned to each sub-model and thus,
each model is estimated separately. For each sub-model estimation only the val-
ues corresponding to the assigned time frame plus potentially some commonly
used variables are required. Figure 3 illustrates the initial situation using the
EGRV model. There, the sub-models M14 (corresponds to 2:00 pm) and M16
(corresponds to 4:00 pm) are presented. Both models only require their specific
time series values, namely t−4, t−28, t−52 for M14 and t−2, t−26, t−50 for M16. In
addition, both consider the time series values corresponding to the Load8 vari-
able and some deterministic variables (that do not require time series access).

The issue in the non-partitioned case is that the time series is stored chrono-
logically in a single, large array and reading values from cache or memory always
requires to read a full cache line or—depending on the hardware platform—even
larger block granularities. The number of values contained in a cache line de-
pends on the system specification. Using the Intel Core i7, for example, a cache
line contains 64Byte and a double value is 8byte, which results in 8 time series
values provided per cache line. Hence, each cache line read for a required value,
will also contain time series values that do not correspond to a sub-model’s time
frame and thus, are not needed for the sub-model estimation. In particular, each
cache line will contain only a single required value. Model 16 in Figure 3 for
example only needs the value t−26, but the read cache line will also provide
the values t−25,t−27,t−28, etc. As a result, multi-equation models have a specific
time series access pattern that does not correspond to the time series storage
and hardware access pattern. Thus, the number of read time series values and
cache lines increases with the number of sub-models, where the majority of the
read values are not required for a sub-model estimation. This results in a large
overhead and a poor data locality within cache and main memory, which leads
to long estimation times when working with multi-equation models.

To allow multi-equation models to quickly adapt to new situations and thus,
to better meet the requirements posed by real-time applications, we optimize
the time series storage to reduce the number of unnecessary time series reads.
To do so, we partition the time series in a way that corresponds to the time se-
ries access pattern of multi-equation models. The number of partitions directly
matches the number of involved sub-models, which in most cases also reflects the
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Fig. 4. Time Series Partitioning.

granularity of the time series. Each of the used partitions represents a specific
time frame (e.g., 4:00 pm) and exclusively stores only values that pertain to this
time frame. Since multi-equation models only support equidistant time series
(compare Section 2), each partition comprises an equal number of values. Figure
4 illustrates an example partitioning for the EGRV model. There, Partition 14
contains only the values that correspond to 2:00 pm and Partition 16 only the
values that belong to 4:00 pm. In addition, we replicate the values that are com-
monly accessed by all sub-models (e.g., t−10 - Load 8) and store the replicates
in the partitions as well. This ensures the independence of the models for an
optimal further parallelization. After the partitioning is finished, the partitions
are assigned to the corresponding sub-model, i.e., the sub-model that describes
the same hour the values from a partition belong to.

Each created partition persists in a specific area of the main memory, which
means that values belonging to the same partition, i.e., values that are assigned
to the same sub-model, are stored closely together within the same memory area.
As a result, when reading the time series values, instead of jumping from value
to value and reading cache lines that contain unnecessary values, the sub-models
can sequentially process all values stored within their respective partition. This
sequential reading of time series values directly increases the processing per-
formance. In addition, the tight data storage, results in more necessary values
that are contained in a single cache line. As a result, the number of cache lines
and memory pages read during a sub-model estimation decreases and thus, the
number of cache and memory accesses. Furthermore, for currently running esti-
mations more necessary values can be stored in the different cache levels. This
greatly increases the processing speed of the CPU and decreases the number
of cache misses. Figure 5 compares the data storage within the cache for the
non-partitioned and partitioned case of sub-model M16 - 4:00 pm. There, again
we refer to the Intel Core i7 CPU, where each cache line contains 8 time se-
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Memory	  Address	  

t-‐50	   t-‐74	   t-‐98	   t-‐122	   t-‐170	  t-‐194	  t-‐218	  t-‐242	   t-‐362	  t-‐386	   ...	  t-‐26	  t-‐2	   t-‐146	   ...	  
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Cache	  Line	   Cache	  Line	   Cache	  Line	   ... 

t-‐410	   t-‐554	   ...	  ParIIon	  P16	  

Fig. 5. Cache Organization of Non-Partitioned and Partitioned Time Series.
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ries values. In the non-partitioned case this means that only one of the values
contained in a cache line is needed for the sub-model estimation. In contrast,
when using our partitioning approach, all values in a cache line are necessary for
the estimation process. Thus, our partitioning approach reduces the number of
cache lines processed by the CPU and therefore, reduces the calculation time for
each iteration of the estimation algorithm. As a result, the memory and cache
locality leads to more efficient calculations for estimating the parameters of all
sub-models. Furthermore, the cache locality and the sequential storage of val-
ues within a partition also enable the usage of compression techniques like the
patched frame of reference (PFOR). Hence, even more values could be stored
within a single cache line, which could further increase the processing speed. In
the future we will intensively evaluate the use of compression technologies in
conjunction to our time series partitioning.

Altogether, our partitioning approach ensures that during all iterations of the
optimization algorithm each sub-model only reads its necessary time series values
and therefore, reduces the amount of redundantly accessed additional values.
This also leads to an optimized memory locality of the data and thus, reduces
the number of read cache lines and the amount of cache misses. This greatly
improves the calculation performance of the optimization algorithms and greatly
decreases the time needed for the multi-equation model parameter estimation.

4 Parallelization of Independent Forecast Models

We further optimize the multi-equation model estimation, by exploiting the par-
allelization capabilities of modern multi-core hardware. Therefore, we assign all
sub-models including their respective partitions to a number of threads that ex-
ecute the parameter estimation of the sub-models in parallel. Due to the fact
that memory throughput and latency can quickly become the limiting factors
when using multi-core parallelization, the parallel estimation also profits from
the optimized storage and enhanced cache utilization provided by our partition-
ing approach. Ideally, the number of utilized threads would exactly match the
number of involved sub-models, which would also bring the greatest benefit for
the parallelization. However, in the real world the number of threads that can
be directly executed in parallel on a specific system is limited. The number of
these so called hardware threads is typically much smaller compared to the num-
ber of involved sub-models (e.g., 48, 96). A system employing a quad-core Intel
Core i7 CPU, for example, has eight threads available; one hardware thread and
one additional thread using Hyper-threading can be executed per core. Assign-
ing more threads than available hardware threads creates no additional benefit
in our scenario, but rather induces additional costs due to overhead for thread
scheduling and cache displacement issues. As a result, for the parallel execution
of the sub-model estimation, we limit the number of parallel threads to the num-
ber of hardware threads available on the executing hardware system and thus,
assign multiple sub-models to each thread for sequential estimation. The assign-
ment of the sub-models to the threads is typically conducted using a task queue,
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Table 1. Test Results: Parameter Equality of Three Example Models.

P1 P7 P8 P9 P12 P15 P16 P20
M11 0.5250 0.9991 0.9883 0.9990 0.3798 0.4762 0.3710 0.5355
M16 0.5511 0.9974 0.9633 0.8651 0.3445 0.3161 0.3530 0.5441
M17 0.9989 0.9078 0.9928 0.8645 0.3409 0.3857 0.3012 0.5523

where each thread picks the next sub-model as soon as it finished the previous
parameter estimation. This leads to good load balance, even if time for estimat-
ing sub-models differs significantly. However, on average when assuming, e.g, 48
sub-models and 8 hardware threads, each thread estimates six sub-models.

Given the thread-local serial estimation of a subset of models, we want to
further optimize the sequential estimation for the sub-models assigned to one
thread. Due to the fact that some sub-models describe similar shapes, we assume
that these models should also have similar parameter combinations. In a small
experiment we compared the parameters between sub-models after their initial
estimation and the results supported our assumption for the most part. Table
1 presents some example parameters for three example models M11, M16 and
M17. While the assumption holds for most parameters, it does not for all. Some
parameters still differ for sub-models we identified as similar (marked grey in
Table 1). In our example, this concerns P1 and P7 for model M17 as well as P9
and P15 for model M11. Still, both models keep their relative similarity to model
M16. As a result, the parameter combinations of similar models are a much
better approximation of a good starting point for the parameter estimation,
compared to starting from the origin. Thus, the basic idea of our improvement
is to iteratively provide the result of the preceding parameter estimation, as the
input (i.e., the starting value) for the estimation of the subsequent sub-model.
This sequential start approach reduces the number of necessary iterations for the
subsequent optimization algorithms per thread, because only the first sub-model
in each thread needs the full effort for the parameter estimation. All subsequent
models then profit from better suited starting parameters, for what reason this
should greatly reduce the time needed for the parameter estimation.

For the parameter re-estimation we can even go one step further, because
the parameter values of the sub-models were already determined in the initial
estimation. As described above, some sub-models exhibit a large portion of very
similar parameter values. For this reason, we enhance the sequential start ap-
proach by clustering the most similar sub-models and assigning each cluster to a
single thread. To do so, we measure the distances between the individual values
of the parameters for all sub-models (e.g., dist(αM1,αM2), dist(αM1,αM3)) using
the euclidean distance measure and combine the models with the least distance
to each other into one cluster. The number of used clusters directly corresponds
to the number of involved threads. In detail, we follow the k-means clustering
approach using the following process:

1. Sub-models are estimated. Maximum model number per thread calculated.
2. Sub-models are randomly assigned as centroids.
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Fig. 6. Clustered Parallelization with Sequential Start.

3. Distance between centroids and sub-models is computed.
4. Models are assigned to centroid with minimal distance unless thread is full.
5. If thread is full, model is assigned to next best thread.
6. The following steps are repeated until no sub-model changes thread anymore.

(a) Incrementally compute new centroid from all sub-models per thread.
(b) Measure distance between new centroids and all sub-models.
(c) Reorder models with respect to new distance measures.

As soon as our clustering process is finished, we assign the clusters to the respec-
tive threads and execute sequential start parameter estimation for each thread.
To avoid degeneration in the sense that one thread estimates much more models
than the other ones, we place a constraint that all threads execute the same num-
ber of models if possible. Figure 6 illustrates the parallelization process. Due to
the stronger similarity between the sub-models within one thread, we can even
further reduce the number of iterations conducted by the parameter estimation
algorithms and thus, reduce the time needed to estimate all sub-models.

To sum up, our parallelization approach further increases the efficiency of
multi-equation models. To compensate for the limited number of hardware threads
on most systems, we exploited sub-model inter-similarities to optimize the paral-
lelization. While we described our parallelization approach for a local multi-core
system, it is also possible to apply the approach to a distributed setting. There,
the partitioning approach would be of even more value, because it would limit
the amount of transmitted data between the involved systems.

5 Experimental Evaluation

In this evaluation, we substantiate the claims of our multi-equation model op-
timization approach and show that with the help of our partitioning and paral-
lelization we can greatly reduce the time needed for estimating multi-equation
forecast models. Our evaluation compares the time needed for estimating and
re-estimating all sub-models, the number of iterations necessary for the (re-
)estimation, the amount of cache misses and, the scalability of our approach.
For this purpose, we employed the EGRV forecast model as introduced in Sec-
tion 2). For the parameter estimation we used the Nelder Mead Downhill Simplex
approach [14] as a local optimization algorithm. The employed dataset is the en-
ergy demand data from the UK National Grid: National Grid Demand (publicly



Partitioning and Parallelization of Multi-Equation Models 11

547.124	  

88.194	  74.867	  

13.126	  

26.126	  

7.492	  

19.963	  

8.779	  

1	  

2	  

4	  

8	  

16	  

32	  

64	  

128	  

256	  

512	  

1024	  

Standard	   Sequen6al	  Start	  

Ru
n6

m
e	  
[s
]	  

Non-‐Par66oned	  
Par66oned	  
Parallel	  (#4T)	  
Parallel	  (#8T)	  

(a) Runtime per Optimization

469.5	  

72.9	  

494.2	  

84.7	  

494.2	  

152.7	  

494.2	  

231.7	  

0	  
50	  

100	  
150	  
200	  
250	  
300	  
350	  
400	  
450	  
500	  
550	  
600	  

Standard	   Sequen6al	  Start	  

N
el
de

r	  M
ea
d	  
Ite

ra
6o

ns
	  in
	  [1

00
0]
	  

Non-‐Par66oned	  

Par66oned	  

Parallel	  (#4T)	  

Parallel	  (#8T)	  

(b) Iterations per Optimization

Fig. 7. Different Optimizations for Parameter Estimation.

Table 2. Average Runtime per 1000 Iterations for used optimization approaches.

Variant Non-Partitioned Partitioned Parallel (#4T) Parallel (#8T)
Avg. Runtime 1.2245s 0.1566s 0.0521s 0.0393s

available [15]): Electricity demand of the United Kingdom. Measures: INDO,
January 1st 2002 to December 31st 2009, 30min resolution (140256 values).

For our evaluation we used the following test system: Quad-Core Intel Core
i7 2635QM (2.0 GHz), 4GB RAM, 128GB SSD, Mac OSX 10.6.8. Our forecast-
ing test suite is written in C++ using the GCC 4.2.1, with OpenMP for the
parallelization. We configured OpenMP to use a pre-defined, static number of
threads and dynamic thread assignment. Thus, if not explicitly specified (like for
the clustering) upon finishing its job, each thread estimates the next sub-model
in the queue. All presented results are the average of 20 subsequent runs.

5.1 Parameter Estimation

In the first experiment, we evaluated the runtime necessary for the estimation
of a multi-equation model, using our optimization techniques. Thus, we com-
pared the standard, non-partitioned case with the partitioned and parallelized
versions. In addition, we also compared the use of the Sequential Start method.
Figure 7 illustrates the results. Please note the logarithmic scale that is used
in the graphs. There, in Subfigure 7(a) the most important fact is that solely
the partitioning approach reduced the time needed for the estimation of all sub-
models from 547.124s to 74.867s, even with slightly more iterations (compare
Subfigure 7(b)). This is a significant improvement over the non-partitioned case.
The parallelization then further reduces the necessary runtime. It can be seen
that the runtime improvement is much larger from 1 thread to 4 threads com-
pared to from 4 threads to 8 threads. The reason is that when using 4 threads
each of them can be directly executed on one core, while when using 8 threads
the additional 4 threads are subject to Hyper-threading. The sequential start
method further decreases the necessary runtime for all variants. The runtime
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of the non-partitioned version is reduced from 547.124s to 88.194s (factor 6.2)
and the runtime of the partitioned variant is reduced from 74.867s to 13.126s
(factor 5.7). The reason for the reduced runtime is illustrated in Figure 7(b).
There, we can see the reduction of the number of iterations conducted until the
optimization algorithm converges. Thus, the sequential start provides more suit-
able starting points for the parameter estimation then starting from the origin
for each sub-model. However, it is important to note that the benefit of the
sequential start method depends on the number of forecast model parameters
and the used estimator. We can further see that the number of iterations for the
parallelized methods increases with the number of threads. The reason is that a
full estimation is necessary for the first model that is estimated per thread; e.g.,
for 8 threads, 8 models cannot exploit the parameters from previous models. In
addition, when using a larger number of threads, fewer models are estimated by
one thread sequentially. Thus, the chance for having only non-similar sub-models
assigned to a single thread is higher compared to using 4 threads, where more
models are estimated in a row. As a result, the parallelization with 8 threads
needs more time using the sequential start optimization then the parallelization
with 4 threads. This means that the benefit of the hyper-threaded 4 additional
threads is of less value, then the drawback due to the increased number of itera-
tions. This leads us to the problem of automatically assigning an optimal degree
of parallelism that we will address in the future.

Table 2 presents the average runtime for all optimizations per 1000 iterations
(chosen for better readability). The sequential start and clustering approaches
are not listed, because they do not influence the runtime per iteration. The results
show a clear trend for the optimization approaches. While the non-partitioned
variant needs more than 1.2 seconds for 1000 iterations of the Nelder Mead
algorithm, all other approaches are clearly below one second, with the partitioned
version marking the maximum of the optimization approaches with 0.1566s.

Overall, we can see that with the help of our optimizations the parameter
estimation can be conducted in a few seconds compared to minutes needed for
the non-partitioned method. Especially the partitioning optimization provides
a significant speed-up. Thus, our optimizations make sure that multi-equation
models can be used in the face of the challenged posed by the market dynamics.

5.2 Parameter Re-Estimation

Our second experiment is similar to the first one, but we compare the runtime
necessary for the parameter re-estimation rather than for the initial estimation.
Thus, parameters of the sub-models are not estimated from scratch, but the
local search algorithms can start from the last valid parameter combination.
Typically the parameter re-estimation is triggered after additional values were
added to the time series. Thus, we appended 1440 additional values (i.e., one
month) to the time series used for the initial parameter estimation and triggered
the re-estimation afterwards. The results are illustrated in Figure 8. There, the
results of the standard execution method in Figure 8(a) are similar to the re-
sults of the initial estimation. The partitioning greatly reduces the necessary
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Fig. 8. Different Optimizations for Parameter Re-Estimation.

runtime, while the parallelization distributes the models to multiple threads and
thus, also speeds up the re-estimation. The sequential start reduces the time
necessary for the re-estimation, but the decrease is not as significant as for the
initial estimation. The reason is that the previous parameters are already a good
approximation of a starting point for the local optimization algorithm. For the
parallelization with 8 threads, the usage of the sequential start method even in-
creases the necessary runtime. The reason is similar to the causes presented for
the initial estimation, but additionally in some cases the parameters from the
previous sub-model are worse starting points compared to the old parameters.

For the parameter re-estimation we also used our clustering method described
in Section 4. There, the models are not sequentially assigned to the threads, but
according to the clustering result. The clustering clearly improves the results of
the parallelized version, because it provides better starting points and a more
beneficial thread assignment of the sub-models than the sequential start method.
Also, using our clustering approach, the calculated centroid is provided as start-
ing point to the first models, which turns out is also a better approximation
of a good start than the old parameters. Figure 8 again illustrates the results.
There, the decrease/increase of the iterations correspond to the measured run-
times. Especially the increased number of iterations when using the sequential
start in conjunction with the 8-thread parallelization is interesting, because it
supports the assumption that sequential model assignment is worse compared to
using just the old parameter combinations. The runtimes for the single-threaded,
partitioned and non-partitioned versions stay roughly the same. The only slight
increase is reasoned by the k-means overhead that is still conducted even for
those variants. Also, increasing the number of clusters to 4 and 8 for the single
threaded versions brings no benefit. The reason is similar to the simple sequen-
tial start method, meaning that an increasing number of clusters also increases
the number of models that cannot benefit from the sequential start.

Overall, the re-estimation exhibits similar results like the initial estimation.
However, the overall runtime for the re-estimation is lower, due to better starting
points for the local search algorithm. With the help of our optimizations we also
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reduced the necessary runtime for adapting a multi-equation model significantly
in all cases. The runtime stays always just roughly over 10s for the partitioning
approach and with respect to the parallelization the time further decreases.

5.3 Cache Utilization

In this experiment we compared the cache misses for the partitioned, non-
partitioned and parallelized case. For this purpose, we used the Intel Performance
Counter Monitor that evaluates the values of the Performance Management Unit
located directly on modern Intel CPUs. With the help of this tool we measured
the number of cache misses that occurred in 20 seconds while running the estima-
tion of an EGRV model. The used Intel Core i7-2635QM with 4 cores provides
a 6 MB L3 cache and 256kB L2 cache per core. Our test data set contained
122,736 values, which resulted in a size of 737kB. This means that the complete
test data set can be cached in the L3 cache and thus, we expect high L3 cache
hit rates in all cases. The results are presented in Table 3. As expected, all cases
exhibit a very high L3 cache hit rate. However, the non-partitioned case exhibits
a far higher total number of cache misses. Due to the fact that the cache hit rate
is nevertheless comparable, this means that in the non-partitioned case far more
reads were executed on the L3 cache. This supports the assumption that in the
partitioned case less cache lines must be read from the L3 cache. With regard
to the L2 cache the result is more diverse. There we see a very low L2 hit rate
of only 2% for the non-partitioned case, in comparison to almost 100% for both
partitioned cases. This means that storing the data tight together leads to far
more necessary values in the cache and thus to a low number of cache misses.
The higher total number of L2 cache misses for the parallelized case is reasoned
by the execution on 4 threads. The Intel Core i7 has one L2 cache for each CPU
core and thus, the number of cache misses roughly increases with the number
of threads. As a result, our partitioning approach greatly optimizes the cache
utilization, which results in a very high L2 cache hit rate.

5.4 Scalability

In the last experiment we evaluate the scalability of our approach regarding data
volume and number of threads. The results are presented in Figure 9. Please
note the logarithmic scale of the y-axis. We first compared the behavior of our
algorithm with an increasing data volume. For this evaluation we used synthetic
data sets with different sizes. The drawback of synthetic data sets is that the

Table 3. Test Results: Cache Misses per Storage Approach.

# L3 Misses % L3 Hits # L2 Misses % L2 Hits
Non-Partitioned 206.850 Mio. 93% 8,034.0 Mio. 2%

Partitioned 237,000 99% 7.245 Mio. 96%
Partitioned (4T) 143,000 100% 22.714 Mio. 97%
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Fig. 9. Scalability of Our Optimization Framework.

number of iterations varies when changing the data volume, which distorts the
results. Thus, the runtime is for 1000 iterations to eliminate the dependency on
the number of iterations. In Figure 9(a)), we see a linear increase of the necessary
runtime time for the partitioned and non-partitioned estimation. Meaning that
doubling the data volume also doubles the runtime of the parameter estimation.
In addition, the development of our partitioning approach is constantly below the
non-partitioned case and both have a similar pace of increase. Thus, there won’t
be a data volume where the non-partitioned case is faster than the partitioned
case, which clearly renders the advantages of the time series partitioning.

The results for the scalability concerning an increased number of threads are
presented in Figure 9(b). Concerning all cases, we observe the greatest runtime
decrease for the parameter estimation and re-estimation, when increasing the
number of threads from one to two. When adding more threads, the runtime
benefit decreases. Furthermore, the start of the Hyper-threading clearly marks a
specific point, after this point the runtime gain is only marginal. In the case of the
used Intel Core i7, we have four cores available, meaning that the largest benefit
can be observed up to a number of 4 threads. When using more than four threads
the additional benefit decreases significantly. As a result, the number of used
threads should at least match the number of available cores on a system, because
the additional performance gain from hyper-threading is limited. Moreover, we
can see that the performance gain when increasing the number of threads is
higher for our partitioned case. When increasing the number of threads from one
to two, the runtime decreases for the partitioned case by almost one half and for
the non-partitioned case by only one third. This trend continues when further
increasing the number of threads (e.g., 2 -> 3 Threads: 26% partitioned, 17%
non-partitioned). Finally, the runtime difference between one and eight threads
is also higher for our partitioned case. The runtime decreases by almost 75%
for the partitioned case, whereas for the non-partitioned case the runtime only
decreases by around 50%. As a result, our partitioning and the optimized cache
utilization also increased the possible degree of parallelization and thus, the
performance gain from the parallelization is significantly higher.
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6 Related Work

Current research mostly focuses on increasing the accuracy of forecast models.
Therefore, there exists only few related work regarding the partitioning and par-
allelization of forecast models, in particular multi-equation models. Some multi-
equation models such as those introduced by Cottet and Smith [7], Soares and
Medeiros [9], and Taylor et al. [8] directly include performance optimizations
on the logical level. Taylor, for example, proposes to use Principal Component
Analysis in conjunction with his multi-equation model to reduce the number of
sub-models and thus, the time needed for model estimation. However, the intro-
duced approaches directly modify the model calculations and thus, influence the
achievable accuracy. In contrast, our optimizations only change the memory ac-
cess of the models and do not change the model’s calculations, which means that
the resulting accuracy is not influenced. In addition, our proposed optimizations
on the physical level can be used together with the optimizations on the logical
level and thus, increase the performance of these approaches even further.

However, there is also some work that—like our approach—uses optimiza-
tions on the physical level. Ge and Zedonik [16] propose to use a skip-list with
various levels to provide different data granularities and different history length
for various purposes and forecast horizons. Forecasts with a long horizon (> 1
month) use a very coarse grain granularity, while forecasts with a short hori-
zon use very fine-grained data. A similar approach is presented by Agrawal et
al. [17] where they merge similar attributes into subset and calculate forecasts
only on these subsets. These approaches can greatly reduce the amount of time
needed for the estimation of a forecast model. However, reducing the amount
of data in most cases also reduces the reachable accuracy of a forecast model.
Especially in application domains, where complex patterns are described, the
use of fine-grained data and a suitable history length is required for providing
accurate forecasts. Our approach does not reduce the number of beneficial val-
ues considered during model estimation, but reduces the amount of redundantly
read unnecessary values. This means that the accuracy is not influenced by the
optimizations proposed by our approach. Also some approaches that directly
involve data partitioning and parallelization of forecast models exist. Canas et
al. proposed a partitioning solution for neural networks that forecast river-flows
to speed up the calculations [18]. Kalaitzakis et al. propose a parallel neural
network for forecasting electric load [19]. While the first approach partitions the
values into river-flow-specific categories that are provided separately to the neu-
ral network, the second approach proposes a parallel calculation of hourly load,
similar to multi-equation models. Overall, their partitioning is rather a model
decomposition than an optimization on the physical level, especially because
the publications omit details about the storage structure and parallelization. In
addition, the proposed parallelization only provides the naive approach for cal-
culating the available neurons of the neural network in parallel. In contrast, a
massive parallelization approach is provided by Shimokawabe et al. [20]. They
propose to distribute the calculation of a weather forecast model on a super
computer that provides some thousand GPUs. However, the considered forecast
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model is a physical weather model, which means that their solution is specific
to their approach and cannot directly be applied to multi-equation models.

Overall, our approach is the first optimization approach that exploits the
specific access pattern of multi-equation models to optimize the data storage
and cache utilization for less redundant and faster data processing. With the
help of this technique we speed up the parameter estimation process significantly
and our improvement is greatly above the current state of the art. In contrast to
most related solutions, our approach does not change the calculation specifics of a
forecast model and thus, does not influence the reachable accuracy. Furthermore,
our approach can supplement the presented solutions and as a result, even further
increase their efficiency enhancements. In addition, the proposed partitioning
and parallelization approach is not limited to models from a specific application
domain, but can be applied to all kinds of multi-equation forecast models.

7 Conclusion

In this paper, we presented an optimization approach for multi-equation models
that greatly increases the efficiency of such models. Our time series partitioning
approach ensures that each sub-model only accesses time series values that are
necessary for their specific calculations, which leads to an optimized memory
locality of the stored time series values. This greatly reduces the number of
cache misses, read cache lines and thus, results in an increased data processing
efficiency. We further increase the speed of the parameter estimation, by utilizing
modern multi-core hardware systems and estimating the sub-models in parallel.
There, we addressed the issue of a limited amount of threads, by presenting
our sequential start execution and the clustered thread assignment technique. In
our evaluation we showed that our optimization framework significantly reduces
the time necessary for estimating and re-estimating an multi-equation forecast
model. Especially our partitioning approach achieved a major speed up of the
optimization calculations. As a result, with the help of our approaches multi-
equation models can be used in the face of real-time environments.

In the future we want to enhance our approach by using compression tech-
nologies that further increase the number of values read per cache line. In addi-
tion, we want to automatically decide for which purpose to use available paral-
lelism most beneficially. The reason is that it is either possible to use available
parallelism to (1) increase the number of models estimated in parallel and thus,
to potentially increase the efficiency or (2) to simultaneously start the estimation
from different starting points and thus, to potentially increase the accuracy.
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