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Abstract: Forecasting of time series data is crucial for decision-making processes in
many domains as it allows the prediction of future behavior. In this context, a model
is fit to the observed data points of the time series by estimating the model param-
eters. The computed parameters are then utilized to forecast future points in time.
Existing approaches integrate forecasting into traditional relational query processing,
where a forecast query requests the creation of a forecast model. Models of continued
interest should be deployed only once and used many times afterwards. This however
leads to additional maintenance costs as models need to be kept up-to-date. Costs can
be reduced by choosing a well-defined subset of models and answering queries using
derivation schemes. In contrast to materialized view selection, model selection opens
a whole new problem area as results are approximate. A derivation schema might
increase or decrease the accuracy of a forecast query. Thus, a two-dimensional opti-
mization problem of minimizing the model cost and model usage error is introduced
in this paper. Our solution consists of a greedy enumeration approach that empirically
evaluates different configurations of forecast models. In our experimental evaluation,
with data sets from different domains, we show the superiority of our approach over
traditional approaches from forecasting literature.

1 Introduction

In many domains, gathered data constitutes time series, e.g., sales per month, system load
per hour, energy supply per minute. This is especially valid in data warehouse systems,
where the time dimension is virtually guaranteed to be present [KR02]. This data is often
used as a basis of decision-making processes. Forecasting is a fundamental prerequisite for
such decisions, otherwise all decisions rely on the history only and might not be valid. One
important use case is forecasting of energy supply. Many renewable energy sources (e.g.,
solar panels) pose the challenge that production depends on external factors (e.g., amount
of sunlight). Hence, available power can only be predicted but not planned, which makes it
rather difficult for energy distributors to efficiently include renewable energy sources into
their daily schedules. This problem addresses the MIRACLE project [BBD+10] that pre-
dicts the energy demand and supply of customers and suppliers and balances accordingly.
This poses the challenge of high query and update intervals (15-minutes or less), where
forecast queries need to be answered as fast and accurate as possible.

There are existing approaches that integrate time series forecasting into traditional rela-
tional query processing in DBMS [DB07, Ora10, Pre10]. In contrast to exporting the data
to an external statistical program, these approaches allow for joint query processing and
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Figure 1: System Overview

exploit database specific optimization techniques. In this context, a forecast query is spec-
ified like a traditional query extended with a forecast horizon, which specifies the number
of values to forecast or a future point in time [DB07, FRBL10]. A forecast query uses a
model of the time series at hand to calculate the expected future behavior of the time se-
ries. In general, model-based forecasting involves two phases, model creation and model
usage. Model creation tries to fit a model (e.g., represented by the parameters of a contin-
uous function) to the observed data points of the original time series (Figure 1 left). Model
creation is typically computationally expensive, often involving numerical optimization
schemes to estimate the d model parameters that span a d-dimensional search space. In
contrast, model usage utilizes the parameters calculated in the first step to forecast future
points of the observed time series. It is cheap as only a few simple operations are neces-
sary. Due to the high model creation costs, query processing can be sped up if models are
only built once and kept in a model pool. Subsequent queries are answered by choosing a
fittable model from this pool [FRBL10, ACL+10, GZ08].

However, as a data-warehouse might contain a high number of individual time series,
building a model for each single time series is expensive. In addition, time series char-
acteristics change over time, requiring maintenance in form of parameter re-estimation.
Only a few forecast methods however allow updating the parameters analytically by using
just the new time series values, most approaches require access to the complete historical
time series for parameter re-estimation. Parameter re-estimation might be as expensive as
model creation. Therefore, in domains like energy supply, where minute-by-minute data
is stored and forecasted, we do not have enough time to keep all models up-to-date until
the next query arrives. One solution to this problem is to choose a well-defined subset of
forecast models. Forecast queries can then be answered by specific derivation schemes.

There are two main derivation schemes in the area of forecasting – aggregation and dis-
aggregation [Fli01]. Aggregation calculates the forecast values of a time series by using



forecast values of subset time series, while disaggregation uses the forecast values of an-
other time series representing a superset, e.g., by using the historical fraction. In the center
of Figure 1 a simplified hierarchy for forecasting energy supply in Germany (abbr. DE) is
presented. Here, the energy supply of single cities is recorded at level one. The supply is
then aggregated according to different regions (level two) and to the supply over the whole
country (level three). Now, the forecast values for the region Bavaria could be either cal-
culated by disaggregation from the forecast values of the total time series over Germany
or by aggregation over the forecast values of the single cities Selb and Hof.

However, the accuracy of a forecast value calculated from a model specifically created for
a given query might be different from the accuracy of a forecast value derived from models
at different aggregation levels of the time series. Interestingly, some derivation schemes
might even improve the accuracy. Therefore, in addition to model usage and maintenance
cost, we need to minimize the forecast error of queries using this model, resulting in a two-
dimensional optimization problem. However, the error of a model cannot be determined
without actually building the concerning model [DWD76, ACL+10]. As a result, any
solution to this problem requires the empirical comparison of alternative configurations.

In general, this problem seems similar to materialized view selection and usage. However,
model selection requires a second metric, the forecast accuracy, while materialized view
selection focuses on minimizing query and maintenance cost only. For model usage, fore-
cast queries always output approximated tuples, so we can exploit additional derivation
schemes, i.e., disaggregation. On the other hand, forecast models are always created at
instance level of the data, so we can not apply compensation queries, e.g., it is impossible
to calculate a selection on top of a model while this is a valid usage of materialized views.

To summarize, our offline design tuning algorithm takes as input a workload and a user
preference regarding execution time and accuracy. It creates different configurations of
models and empirically analyzes their forecast error and maintenance cost (Figure 1 right).
As a result, the best configuration for the given workload is provided to the model pool.
This configuration leads to a reduction of query processing times as models are already
present in the database, a possible higher forecast accuracy as aggregation dependencies
are taken into account and less maintenance costs as only necessary models are stored.

Contributions and Outline In summary, we make the following contributions:

• First, we introduce the fundamentals of physical design of forecast models in a data-
warehouse schema with multiple defined hierarchies (Section 2.1 and 2.2).

• We then define our two-dimensional optimization problem, i.e., increase forecast
accuracy and reduce maintenance cost (Section 2.3).

• Third, we present our greedy enumeration approach to reduce the space of possible
configurations (Section 3.1) and present heuristics, which might reduce the number
of forecast models considered (Section 3.2).

• Finally, we show the applicability of our approach in an experimental evaluation
(Section 4).



We will finish with related work in Section 5 and conclude in Section 6.

2 Multi-Hierarchical Forecasting

In this section, we first sketch the basics of a multi-hierarchical forecasting system. Subse-
quently, we explain the notion of physical design in such a context. We finish by discussing
conflicting optimization challenges and by formulating our general optimization goal.

2.1 Multi-Hierarchical Forecasting System

Hierarchical forecasting is based on grouping time series into groups, group families and
so on [Fli01]. Each level results from the aggregation of the child elements one level
below. The top level is the total aggregate of all elementary time series. If we transfer
the hierarchical forecasting approach to a data-warehouse environment, where multiple
hierarchies exists in parallel, merged by foreign keys to dimensions in the fact table, we get
a multi-hierarchical forecasting system. This generalization also contains different levels
of aggregation, where a parent element is calculated by aggregation of corresponding child
elements on an arbitrary level below. However, as we have multiple hierarchies, a child
might contribute to several parents. In addition, it might be possible to calculate parents’
values from multiple sets of child nodes on the same level.

Definition 1 Multi-Hierarchical System: In a multi-hierarchical system, the value Sij(t)
at time t of the time series Sij with index j at level i is calculated as follows:

Sij(t) = AGGl∈GpijS(i−1)l(t),

whereGpij contains a list of child indexes of group p at level i−1, which contribute to the
aggregate of element Sij . AGG is an aggregation function, e.g., SUM. Elements at level 1
are the elementary time series, while the element at level h is the total aggregate over all
time series. The total number of elements |S| is calculated by the Cartesian product over
the number of elements per hierarchy.

Example 1 An example multi-hierarchical forecasting systems is shown in Figure 2. Re-
call our running example of forecasting energy supply. The energy supply can also be dis-
tinguished according to different energy sources, e.g. solar energy. Therefore, in addition
to the location hierarchy (Figure 2 left), the energy supply can be aggregated according
to different products (Figure 2 right). In the center of Figure 2, these two hierarchies
are combined into a multi-hierarchical structure, where a single element represents an
instance from both hierarchies (e.g., the supply of wind energy in Hof). Child elements
are additionally annotated with an index p (at the top), where elements at level i with the
same index can be used to calculate the corresponding parent. For example, the element
S31 = R1 can be either calculated by aggregating elements S21 = C1 and S24 = C2 or
by aggregating elements S22 = R1P1 and S23 = R1P2.
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Figure 2: Multi-Hierarchical Forecasting Structure

Note that the multi-hierarchical structure is based on the instance-level of the data. In
contrast to the aggregation lattice on attribute level, we include additional functional de-
pendencies that might be given by information assurances (ORACLE) or derived from the
underlying data. For example, in Figure 2 instances of the grouping (R,C, P ) are not
considered, as R directly depends on C and therefore (R,C, P ) is equal to (C,P ).

Forecasting Having this structure in mind, for each element Sij , we can calculate the
forecast value of the corresponding time series by three different ways:

Forecast Model: First, we can create a forecast model Mij directly from the time series
Sij . We can then use this model to directly calculate a forecast value for element Sij .

Aggregation: Second, we can create forecast models for all child elements with the same
group index p at level k, where k < i. We then forecast using each model in the group and
aggregate the forecast values to get the forecast value of the parent element. We denote
this strategy as Aij(kp). In addition, we can aggregate recursively.

Disaggregation: Third, we can create a forecast model for one parent element p at level k
and disaggregate the forecast value. The disaggregation strategy requires the calculation
of a disaggregation key Dij(kp). A simple, but quite successful disaggregation strategy
(assuming SUM as aggregation method), is an average over the fraction of the child series
and the parent series: Dij(kp) = 1/n ·

∑n
t=1 Sij(t)/Skp(t) [GS90]. Then, the forecast

values of the series element Sij are the product of the disaggregation key Dij(kp) and the
forecast value of Skp.

Each forecasting strategy allows different underlying methods. For example, we could
use exponential smoothing as forecast method, the summation as aggregation method and
an average over the fraction of child and parent series as disaggregation method. While
choosing a concrete method is independent from our approach, it might have a high impact
on the resulting physical design.



2.2 Physical Design

Conceptually, the user expects a forecast model for every time series queried. However,
based on the three possibilities to calculate the forecast values for a single element Sij ,
we can have different physical designs in a multi-hierarchical system. The benefit of a
physical design depends on the workload of the system. For example, a model at a higher
level might support long-term forecasts as the general trend of the data is captured. We
therefore consider a workload trace of forecast queries for a given period of time. A
workload W consists of elements Sij , their relative frequency f and the corresponding
forecast horizon h: W = {Sij , f, h}. An element Sij might be either described by point
queries or pure conjunctive queries, i.e., addressing multiple hierarchies. However, queries
might also address several elements Sij (e.g., disjunctive, join or group-by queries). In that
case, we only store the individual elements in our workload model.

Definition 2 Configuration: For a given workload W , a configuration CW is a valid as-
signment of forecast models to individual elements. An assignment is valid if each element
Sij in W can be calculated by either a forecast model, aggregation or disaggregation.

In order to make sure that we can calculate forecast values for each element Sij in W , we
always include the least common parent in our configuration, i.e., the element (might not
be part of W ) at the smallest level that is parent of all (other) elements in W .

Example 2 Recall Example 1 and consider the workload W={(R1, 1/5, 1), (C1, 1/5, 1),
(C2, 1/5, 1), (C1P1, 1/5, 1), (C1P2, 1/5, 1)}, where the one-step ahead forecast for the
supply in the region Hesse (R1), the supply in the city Fulda (C1), the supply in the city
Lich (C2), the supply of solar energy in Fulda (C1P1) and of wind energy in Fulda (C1P2)
is requested. A first valid configuration is to create a model over the supply in the region
Hesse {R1} and calculate all workload elements by disaggregation. A second possible
configuration is {C1, C2} that calculates elements C1P1 and C1P2 by disaggregation and
element R1 by aggregation. Many more possibilities exist.

It is obvious that the number of possible configurations is exponential with the number of
possible models |CW |. For each element, we can decide if we create an individual forecast
model and we can choose an arbitrary combination of models.

2.3 Optimization Problem

Our goal is to find the best configuration for a given workload. Each configuration can be
described by two metrics, configuration error and configuration maintenance cost.

Intuitively one would think that a forecast value directly calculated from a model is always
superior than disaggregation from a higher level model. However, many studies in mathe-
matical and forecasting literature have shown that disaggregation (or aggregation) can be
superior to individual time series models [DWD76, Fli99]. Therefore, the forecast error is



not monotonic (related to a hierarchical system), as adding a new forecast model does not
automatically imply a lower forecast error.

Definition 3 Configuration Error: Given a configuration CW , the errorEW is calculated
by the total error over all accessed elements in W using the best strategy:

EW =
∑

(Sij ,f,h)∈W

f · min
∀k1>i,k2<i

(
e(Mij , h),e(Dij(k1), h),e(Aij(k2), h)

)
(1)

where Mij denotes a forecast model, Dij(k1) denotes the disaggregation and Aij(k2) de-
notes the aggregation strategy. We use the time series of length |Sij |−h to train the model
Mij and calculate the disaggregation key Dij . Then, e(strategy, h) calculates the error
for the given strategy over the h-step-ahead forecast over the remaining time series.

The forecast error is calculated using the absolute value of the symmetric mean absolute
percentage error (SMAPE), which is a scale-independent accuracy measure. For both,
aggregation and disaggregation, the forecast error is determined by choosing the set of
child elements or the parent with the minimal forecast error. Note that we do not support
direction changes, i.e., a disaggregate cannot be calculated from an aggregate as this might
lead to an arbitrary result, not following the characteristics of the time series.

Maintenance of forecast models requires mainly parameter re-estimation, as maintain-
ing the state of a model (e.g., smoothing constants) is cheap. The costs of parameter
re-estimation depends on factors like frequency of re-estimation, time series length and
runtime of the parameter estimation algorithm. However, as we are in an offline context,
we assume a fixed estimation method and strategy leading to equal costs for each element.
In addition, we can assume that the time series are about the same length as aggregate
series at higher levels need all their child series to be of the same length. However, if a
series has a missing value, this value might even have a meaning (e.g., zero products sold
this month). Finally, we do not include the maintenance of disaggregation keys as these
are, similar to the state of the model, significantly cheaper than parameter re-estimation
of models. Following these considerations, we explicitly use a very simplified model to
estimate the maintenance cost of a configuration by using the number of created models.

Definition 4 Maintenance Cost: Given a configuration CW , the maintenance cost BW

are calculated by the number of forecast models in CW :

BW = |Mij ∈ CW | . (2)

Now, our optimization goal is twofold: First, we want to reduce the forecast error. Second,
we want to do as less maintenance as possible.

Definition 5 Optimization Goal: Our optimization goal is to find the configuration CW ,
which is minimal according to the configuration error EW and maintenance costs BW :

min
CW

(
α · EW

ET
+ (1− α) · BW − 1

Bmax − 1

)
with Bmax > 1 and α ∈ [0, 1], (3)



where Bmax as well as ET are used as normalization constants. Bmax is the maximum
number of models in CW and ET is the forecast error for the configuration, where only a
model for the common parent is used. For normalization purposes as well, we subtract 1
in the second part of the equation.

With parameter α we can weight the importance of both dimensions. If we set α = 0.5,
we give equal weight to maintenance cost and forecast error. If we set α = 1 we try to find
the best configuration according to the forecast error, without regarding maintenance. This
generalizes the problem of finding the best hierarchical structure in forecasting literature.
As the forecast error is not monotonic with respect to the number of models, the minimum
forecast error can result for any configuration. On the other hand, with α = 0, as we do
not consider disaggregation costs, we get the configuration where only one model is used
for the common parent and all other elements use the disaggregation strategy.

3 Offline Design Approach

In order to solve the optimization problem of Definition 5, our general approach works as
follows:

1. Create a forecast model for each element in the workload and the common parent.

2. Enumerate all valid configurations according to Definition 2.

3. Evaluate each configuration regarding the configuration error (Definition 3) and
maintenance cost (Definition 4).

4. Choose a configuration according to Definition 5 and drop all models, which are not
part of the solution.

However, this naive algorithm has unacceptable runtime, because we first need to create a
forecast model for every element considered in the workload. This is necessary to calcu-
late the model, aggregation and disaggregation benefit for each element. However, model
creation is expensive as parameters need to be estimated. Second, it is infeasible to enu-
merate all possibilities as the number of possible configurations is exponential with the
number of elements (on instance-level). Therefore, we present an approach to reduce the
number of configurations enumerated (Section 3.1). Then, we discuss some heuristics to
reduce the number of forecast models considered (Section 3.2).

3.1 Greedy Enumeration

As explained before, maintenance cost increase monotonically with each additional fore-
cast model while the behavior of the forecast error is unknown. A new model might lead
to an improvement but the error could also stay similar or get even worse. Thus, in the



Algorithm 1 Greedy Enumeration
Require: elementsConsidered

1: bestConf ← concat(1,repeat(0, numElements− 1))
2: bestEval← α
3: repeat
4: stop← true
5: currentConf ← bestConf
6: for i in elementsConsidered do
7: currentConf [i]← 1
8: if (currentEval = evaluateConfiguration(currentConf )) < bestEval then
9: bestConf ← currentConf

10: bestEval← currentEval
11: newModel← i
12: stop← false
13: currentConf [i]← 0
14: elementsConsidered← remove(elementsConsidered, newModel)
15: until stop = true

second case, we would never use this model as only maintenance increases. Therefore, we
propose a greedy enumeration approach, where we start with the configuration where only
a model for the top element is used. Thus, this is the valid configuration with minimal
maintenance cost. We then try to add additional models step-by-step, using most promis-
ing models first. As each model is described with equal maintenance costs, we always add
the model next, which results in the lowest overall configuration error.

Algorithm 1 outlines our greedy enumeration approach. First, our algorithm requires the
elements, which actually can qualify for a model. This could contain all elements in the
multi-hierarchical structure. However, the workload will reduce these elements signif-
icantly to only the queried elements. In addition, the heuristics introduced in the next
section will reduce the number of models considered further. To represent a configuration,
we use a vector where 1 stands for forecast model and 0 for no model. The entries are the
consecutive elements in the multi-hierarchy starting at the top and going down from left
to right. Therefore, in line 1 we create the configuration, where only a model is created
for the top element. According to Definition 5, the evaluation for our start configuration is
always α, which we use as our current best evaluation (line 2). Then, for each element in
our list of considered elements, we create a configuration where a model is used for this
element (line 7). We evaluate this configuration with Definition 5 and if it is better than
the current one, we store it (line 8-10). Then, we reset the current configuration (line 13).
Therefore, in each step we iterate over all elements and output a new configuration with
one additional element. In the end, we remove the new element from the list of considered
elements (line 14). We stop when we find no better configuration than the current one.
Note that we need to check the benefit of each single element in each iteration as a new
model might have an impact on every other element in the workload.

Example 3 To illustrate the greedy approach, an example is shown in Figure 3. This ex-
ample is created for the workload described in Example 2 with α = 0.5. A gray box shows
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Figure 3: Greedy Enumeration

that an evaluation model was created for the corresponding element, while a gray colored
node implies that the model is actually used and maintained in the current best configura-
tion. Each node is annotated with the errors when using a model EM , aggregation EAk

and disaggregation EDk, where k is level from which the forecast values are aggregated
or disaggregated. In the left part of Figure 3, the start configuration is shown in which
only a model for the top element is used. As explained before, the start evaluation equals
always α, which is shown in the box in the upper left corner (Definition 5). Note that we
use the total error to describe the configuration error as all elements in the workload have
the same frequency. Now, our greedy approach sequentially checks the benefit of a model
for each element. Elements C1 and C1P1 have the highest disaggregation error of 6.0 and
would both profit from a model equally as the model error is only 1.0. However, element
C1P2 would also profit from a model at element C1 as the disaggregation error using level
two is lower. Therefore, we would decide to use a model for element C1 (Figure 3 center).
The new evaluation drops down to 0.43. Second, the greedy approach would decide to use
a model for the element C1P1 as we get the best improvement regarding the forecast error
and the evaluation drops to 0.42. Although, the element C2 would also lead to a decrease
of the error, the algorithm is finished now. The improved error does not compensate the
increased maintenance costs. The evaluation would be 0.51.

For ease of illustration, we used a single hierarchy in this example. However, the only
difference in a multi-hierarchy is that a child node might benefit from the disaggregation
from several parents and a parent from the aggregation of several sets of child elements.

This approach might result in local sub-optima for two reasons. The first reason is that
models are never removed, although they might not be necessary anymore as the element
can be calculated by aggregation. Therefore we additionally analyze aggregation benefits.
Thus, whenever we evaluate a configuration, we also check if we can remove models,
which can now be calculated by aggregation. If so, we also evaluate the configuration with
the removed aggregate model. Second, we might miss optimal configurations because we
only consider single models with each step. However, a whole group might improve the
result as elements at higher levels can be calculated by aggregation. Therefore, we include
a second optimization, where we analyze groups in each step as well. In our case, a group
is a complete set p of elements at one level, which contribute to the same aggregate one
level above. Different strategies to build groups are possible. However, this can have the
drawback that groups are added too early in the process resulting in a different local sub-
optima. In addition, we still end in local sub-optima if adding more than one model (but
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Figure 4: Model Creation Heuristics

not a whole group) would allow the removal of an aggregation model and lead to a better
overall forecast error. However, in most cases, aggregation benefits are less important as
they require many child models to be build.

The complexity of the greedy enumeration approach is O(n+n2) in the worst case. First,
we create n forecast models. Then, we evaluate for each element the benefit of a model
and add the element with the most benefit. We stop when we can not find a beneficial
model anymore resulting in a worst case evaluation of

∑n
i=1 i ≈ n2 configurations. In the

best case, we stop after one run as we did not find a better configuration, so we result in a
linear behavior. Note that the creation of a forecast model might be much more expensive
than the evaluation of one configuration.

3.2 Heuristics

In this section, we present heuristics to reduce the number of forecast models considered.
Each heuristic only creates a subset of possible models. If there is no model created for
an element, our greedy enumeration approach does never consider a configuration where
a model for this element is used (Algorithm 1, line 6). All heuristics can be used by
themselves in addition to the greedy enumeration approach, but an arbitrary combination
of these heuristics is also possible.

Decomposition The decomposition approach assumes that if we find a good strategy for
each single hierarchy, the combination of hierarchies, i.e., conjunctive queries, will also
result in a low error. Therefore, only forecast models are considered that address elements
from single hierarchies. For all combinations of hierarchies we always use the disaggre-
gation strategy (Figure 4(a)). This heuristic reduces the number of considered elements to
the sum over the number of elements in each single hierarchy.

Recursive The recursive approach has the underlying assumption that if disaggregation is
best for one level, it is also best for all underlying child elements. Initially, we only create
forecast models for the top element and the level underneath. Every time we decide to use
a forecast model, we create all models one level below (Figure 4(b)). In the best case, this
approach only creates models for the top two levels of the hierarchy. However, in the worst
case, all models are created. If we combine the recursive heuristic with the decomposition



heuristic, we might even get a higher reduction of forecast models created, as each child
node is only reachable through exactly one parent node.

Time Series Characteristics This heuristic analyzes the characteristics and the relation of
the time series to filter out forecast models to be created and considered. For this, we use
two different characteristics, correlation and disaggregation error. With both approaches,
forecast models are only created if a certain characteristic is fulfilled.

Correlation The core observation is that high correlated time series follow the same pat-
tern and thus could be calculated by the same model. Therefore, we calculate the cor-
relation between parent-child relations. For this, we also consider parent-child relations
over more than one level (Figure 4(c)). Then, we only create models for child series if
the correlation is below a threshold τ . The threshold τ defines the aggressiveness of this
approach. A low τ might filter out many models, but might also miss good configurations.
In contrast, a high τ is safer, but might only filter out a few models.

Disaggregation Error As we always create the top model, we can analyze the disaggrega-
tion error of each element in the workload. This approach only creates a model for an ele-
ment if the disaggregation error is above ω. To calculate ω, we use the median of the disag-
gregation error median(e(Dij(11), h)) over the elements in the workload and the weight
α of the configuration error. Then, ω is calculated by median(e(Dij(11), h))/(α+ 0.5).
Therefore, if we give equal weight to the configuration error and maintenance cost (α =
0.5), we create all models higher than the medium disaggregation error. This works as we
assume equal maintenance cost in this paper. If we give low weight to the configuration
error, we create less models as ω increases and vice versa. Therefore, we adjust the num-
ber of created models according to the weight of the configuration error as a lower weight
would result in a configuration with less models anyway.

4 Experimental Evaluation

We conducted an experimental study in order to evaluate (1) the performance of our ap-
proach on three data sets from different domains with respect to traditional approaches
from forecasting literature, (2) the performance and scalability of the proposed heuristics
and (3) the adaptability to different user requirements.

4.1 Experimental Setting

To implement the described offline design tuning approach we used the statistical comput-
ing software environment R. It provides efficient build-in forecast methods and parameter
estimation approaches, which we used to build the individual forecast models. All exper-
iments were executed on an IBM Blade (Suse Linux, 64bit) with two processors (each a
Dual Core Intel Xeon at 2.80 GHz) and 4 GB RAM.

In order to show the general applicability of our offline design approach, we use the fol-



electricity tourism energy
#elements level 1 1,568 32 86
#elements level 2 273 12 1
#elements level 3 14 1 -
#elements level 4 1 - -

series length 28 25 5,808

Table 1: Sizes of Data Sets

lowing three data sets:

• Electricity: Worldwide Electricity Generation The first data set was obtained from
the US Energy Information Administration and is public available at [US110]. This
data set includes metered world-wide electricity generation. It consists of two hi-
erarchies. The first hierarchy contains regional information from world-wide over
continental to individual countries. In the second hierarchy different categories of
electricity sources such as renewable or nuclear are distinguished. After merging
both hierarchies, we result in multi-dimensional hierarchy with four levels, similar
to Figure 2. The data is available from 1980 until 2008 in an annual resolution.

• Tourism: Australian domestic tourism The second data set consists of quarterly
observations on the number of visitor nights for the Australian domestic tourism,
which is an indicator of tourism activity. The sample begins with the first quarter
of 2004 and ends with the first quarter of 2010. The series are obtained from the
National Visitor Survey, which is managed by Tourism Research Australia [TRA10].
The data consists of two hierarchies, purpose of visit and state, resulting in three
levels of the final multi-hierarchical structure.

• Energy: EnBW MEREGIO Energy Demand The third data set was provided by a
partner from the MIRACLE project [BBD+10] and was obtained during the MERE-
GIO project [MER10]. This data set contains energy demand from 86 customers
ranging from November 1st 2009 to June 30th 2010 in a 1 h resolution. It therefore
consists of a single hierarchy with two levels, i.e., level 1 contains the individual
customer demand while level 2 contains the total aggregate over all customers.

Table 1 shows the sizes of the different levels and time series lengths for each data set.

For all three data sets we fixed the forecast, aggregation and disaggregation method. As
forecast method we use triple exponential smoothing. The class of exponential smoothing
methods is widely used in hierarchical forecasting and has proven to be very robust and
applicable in an automated fashion to a large set of time series [Cha00]. If we would use
a more complex forecast method, we would save even more execution time with our ap-
proach as parameter estimation gets more expensive. For the aggregation method, we use
summation. Gross and Sohl analyzed 21 disaggregation methods [GS90] and concluded
that a simple average of the elements’ proportion of the parent element over the entire his-
torical period worked best compared to other, partly more complex, methods. Therefore,
we will use this as disaggregation strategy.



In addition, we fix the workload. We assume that each element in the hierarchy is queried
once requesting a one-step ahead forecast, so W = {(Sij , 1/ |S| , 1)} for i=1 ... #lev-
els, j=1 ... #elements of level i and |S| is the total number of elements in the whole
multi-hierarchical structure. Therefore, we analyze the worst case, where every element is
considered equally. A different workload would only reduce the search space.

4.2 Performance Comparison

In the following, we compare our greedy approach with the three traditional approaches
”bottom-up”, ”top-down” [Fli01] and ”complete”. The bottom-up approach creates fore-
cast models for all time series at level one and calculates all other forecasts by aggregation
of elementary forecasts. The top-down approach creates only one forecast model for the
top element and calculates all other forecasts by disaggregation of the top forecast. Finally,
the complete approach creates forecast models for all elements in the hierarchy and calcu-
lates all forecasts using directly the model for the concerning element. In this experiment,
we use 80% of the data sets to learn the models for all approaches and to learn the config-
uration for our greedy approach. We set α = 0.3, so we give more weight to maintenance
time. Then, we use the remaining 20% to produce one-step ahead forecasts, where we
reestimate the model parameters after each forecast. Note that we also could use a more
sophisticated model maintenance method, where we trigger parameter reestimation time-
or threshold-based. However, this is not the scope of this paper and the effect would be
similar for all approaches. Figure 5 summarizes the results for all three data sets and ap-
proaches. In Figure 5(a), the average forecast error (using the accuracy measure SMAPE)
of each element over the evaluation period is illustrated. Here, the maximum forecast error
equals 1. In Figure 5(b), the relative maintenance cost compared to the complete approach
as well as the total number of used models is shown.

Our goal is to create as less models as possible while reaching a low forecast error. If
we take a rough view at the results, we see that our greedy algorithm produces the best
result considering both dimensions. Let us analyze each data set a bit more closely. For
the electricity consumption, the complete (C) and bottom-up (B) approach have a much
better forecast error than the top-down (T) approach. Therefore, our greedy approach (G)
creates 61 forecast models reducing the forecast error a lot but adding only little additional
maintenance time. In order to reduce the error even more and beat the complete approach,
we need to choose a higher value of α. We will analyze the effect of α more closely in
Subsection 4.4. For the tourism activity, the forecast error of the complete and bottom-
up approach is slightly better than the top-down approach. However, the forecast error
can actually be reduced a lot, if a few forecast models are created at level two and the
forecasts at level one are created by disaggregation from level two. Therefore, our greedy
approach decides to create some forecast models at level two, reducing the forecast error
even more than the complete approach but resulting in much less number of models to
maintain. For the energy demand, the top-down approach is similar to the complete and
bottom-approach. Therefore, our greedy approach decides to use the top-down approach,
creating no additional forecast models where we save a lot of maintenance cost compared
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(a) Distribution of Forecast Error

C B T G C B T G C B T G

re
la

tiv
e 

m
ai

nt
en

an
ce

 c
os

t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

electricity tourism energy

1856

61

49

5

87

1

(b) Maintenance Cost

Figure 5: Comparison of Different Approaches

to the complete or bottom-up approach (one instead of 87 models).

To summarize, on the one hand our greedy approach can find a better configuration than
the traditional approaches, even with a low value of α. On the other hand, maintenance
time is reduced by using only necessary models. The speed up we can achieve strongly
depends on the used hierarchy, i.e., the number of elements, and on the relationship of
the time series, i.e., weather bottom-up or top-down is superior in general. In terms of
total execution time, the benefit strongly depends on the used forecast method and the
time series length. For example, for the energy data set, we save about half a minute
in each maintenance step if we use triple exponential smoothing. The total maintenance
time is 3.4 h for the complete approach and 2.3 minutes for the greedy approach. If we
use an AR(12) model, which is an instance of the widely used class of ARIMA models,
we save 26 minutes in each single maintenance step. As we are in an offline context, we
did not explicitly measure the speed up of forecast queries. However, a low number of
forecast models implies lower maintenance cost and thus, a lower system load or lower
query processing times if deferred maintenance is used.

4.3 Comparison of Different Heuristics

In a second experiment, we take a closer look at the different heuristics introduced in Sub-
section 3.2. For each heuristic, we might get a slightly worse configuration compared to
the full greedy approach but we might save execution time. Figure 6(a) shows the evalua-
tion (= value of objective function according to Definition 5) of all heuristics compared to
the evaluation of the greedy approach. As all data sets exhibit totally different execution
times, Figure 6(b) shows only the relative execution time decrease to the full greedy ap-
proach. In this experiment, we set α = 0.75 so that the impact of the heuristics are higher
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Figure 6: Comparison of Different Heuristics

as more forecast models are created.

The energy data set contains only a single hierarchy. Therefore, the decomposition heuris-
tic (dec) leads to the same accuracy and execution time as the full greedy approach (full).
For the other two data sets, it shows the lowest execution time but also increases the eval-
uation most for electricity and tourism data set. Therefore, it should only by used if very
little time is available. The recursive heuristics (rec) increases the evaluation only slightly
for the electricity data set but not at all for the other two data sets. However, it shows
the smallest improvement in terms of execution time. Therefore, it can be safely used to
save some of the execution time of the offline design approach. For the correlation heuris-
tic (cor), we set the correlation threshold to 0.75. This heuristic takes the third rank in
terms of execution time and only increases the evaluation slightly for the electricity and
tourism data set. As a result, it should be preferred to the recursive heuristic in order
to save more execution time. The disaggregation error (err) heuristics shows the second
best execution time and only increases the evaluation slightly for all three data sets. To
summarize, besides the decomposition heuristic, all heuristics only increase the evaluation
slightly compared to the full greedy approach. Most execution time can be saved when the
heuristics are used, which take time series characteristics into account.

In order to examine the scalability of our greedy approach and the different heuristics, we
vary the size of the electricity data set. For this, we increase the number of electricity
sources from one to seven and combine the resulting electricity source hierarchy with the
region hierarchy. If we use only one electricity source, we result in a single hierarchical
structure, which consists of 464 elements. With each additional electricity source, we
add 232 elements. The experimental results are displayed in Figure 7(a). The full greedy
approach (using no heuristic) has the longest runtime and shows a super linear behavior
with increasing number of elements. In general, all heuristics also increase the number of
considered models with increasing data size resulting in a super linear behavior as well.
However, the concrete outcome strongly depends on the data itself, e.g., how many time
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Figure 7: Scalability and Adaptability to User Requirements

series fall below the correlation threshold.

4.4 Adaptability to User Requirements

In this section, we take a closer look at the outcome of our greedy approach while varying
the parameter α. Recall that an α = 0 results in the top-down approach as this is the
configuration with the minimal maintenance cost. In contrast, setting α = 1 leads to the
configuration with the best overall forecast error regardless of the maintenance cost. In this
experiment, we execute our greedy approach using the whole electricity data set while in-
creasing α from 0 to 1. Figure 7(b) presents the average forecast error and the maintenance
cost of the final configuration. In the beginning, with only little additional maintenance
cost we get a high improvement of the average forecast error. The reason is that our greedy
approach always adds those models first that lead to the highest improvement. As α gets
higher the number of additional models increases but the error improvement decreases. To
conclude, with a small value of α we get the best improvement of the forecast error with
low additional maintenance cost. A very high α leads to the best overall forecast error,
however it might not be worse the maintenance cost. Nevertheless, for the energy data
set, a value of α = 1 leads to the creation of about 57% of the models where the average
forecast error beats the bottom-up and complete approach.

In addition, we examined different kind of workloads. For this, we varied the number of
distinct elements addressed by the workload, the forecast horizon and the frequency of
forecast queries. The higher the number of distinct elements, the larger the search space.
Therefore, with a higher number of distinct elements, we tend to a higher number of mod-
els but also to a higher accuracy as we can exploit more disaggregation and aggregation
possibilities. An increase of the forecast horizon of the queries leads to a higher average er-
ror and decreasing maintenance costs for all data sets. Longer forecast horizons are harder
to predict at single time series level. Due to more robustness, the greedy algorithm favors



models at higher aggregation levels leading to lower maintenance costs. Last, we varied
the distribution of query frequencies by increasing the parameter z of a zipf distribution.
A high parameter implies a high frequency of only a few elements in the workload (high
skew) while a low parameter results in equal distribution of the frequencies (low skew).
With a high skew, we strongly prefer a few workload elements leading to the creation of
models favoring only those. However, the overall forecast error stays roughly constant as
the error is weighted with the workload frequencies (Definition 3).

5 Related Work

Related work can be found in three main areas: (1) existing approaches to integrate fore-
casting in database management systems, (2) hierarchical forecasting studies in forecasting
and economic literature and (3) materialized view selection.

Forecasting in DBMS Forecasting has already been successfully integrated into DBMS.
For example, within the Fa system [DB07] an incremental approach is proposed to build
models for a multidimensional time-series in which more attributes are added to the model
in successive iterations. Furthermore, the skip-list approach for efficient forecast query
processing [GZ08] proposes an I/O-conscious skip list data structure for very large time
series in order to enable the determination of a suitable history length for model building.
However, all approaches investigate how to efficiently find the best forecast model for one
specific forecast query using database techniques. We consider the problem of efficient
forecast query processing from a different point of view by addressing the interaction of
queries, which allows the reduction of the forecast error and maintenance cost by reusing
models. Agarwal et al. address the problem of forecasting high-dimensional data over
trillions of attribute combinations [ACL+10]. They propose to store and forecast only a
sub-set of attribute combinations and compute other combinations from those using high-
dimensional attribute correlation models. However, they select the sub-set manually for
historical importance and seasonality, while we propose an automatic approach to deter-
mine the optimal set of models to store. Then, their correlation models can be used as
disaggregation method in our approach.

Hierarchical Forecasting In contrast to our work, hierarchical forecasting considers only
a single hierarchy. In this context, the majority of the literature has focused on comparing
the performance of bottom-up forecasting (individual item forecasts are made directly
and aggregated) and top-down forecasting (forecasts are made at aggregate level and then
allocated to individual items). Some favor the bottom-up approach [ZT00, DWD76], other
the top-down approach [Fli99, NMB94] and some found no method to be superior for their
specific data set [FM92]. In addition, influencing factors of the superiority of one approach
over the other were investigated, e.g., quality of forecast method, correlation between
variables and forecast errors [Bar80]. In a recent work, bottom-up versus top-down was
investigated when the subaggregate series follows a first-order univariate moving average
MA(1) process [WVP09]. They found no significant difference in the accuracy of the
two strategies when the correlation between the subaggregate series is small or moderate.
However, all research empirically analyzes one specific data set and conclude for one of



the two methods. In contrast, we propose an approach that quantifies different solutions
and also allows for mixed solutions. In addition, existing approaches focus on accuracy
only, while we take maintenance cost into account as well. This allows for faster query
processing and a lower system load as maintenance time of models is reduced.

Materialized View Selection There is a high amount of work in the area of materialized
view selection [ACN00, BPT97, SDN98]. For example, in [BPT97] two techniques are
proposed, which reduce the number of views to consider for materialization (based on
query benefit, dependent views and the size of the materialized view). The general problem
is the same – for a given workload find the optimal set of materialized views with minimal
query and maintenance cost. However, the model selection problem strongly differs from
the materialized view selection problem, as a second dimension – the forecast accuracy –
is introduced. In addition, different derivation schemes are used in model selection, i.e.,
disaggregation. Therefore, we cannot apply existing techniques directly.

6 Conclusion and Future Work

In this paper, we introduced the problem of physical design of time series forecast models
in a multi-hierarchical data-warehouse scenario. We defined the two-dimensional opti-
mization problem of minimizing the forecast accuracy and maintenance cost. On the one
hand, we generalized the problem of finding the best hierarchical structure addressed in
forecasting literature. On the other hand, we additionally include maintenance cost ad-
dressing evolving time series. Our solution consists of a greedy enumeration approach
and different heuristics, which might reduce the time consumption of the offline design al-
gorithm. In our experimental evaluation, we used three data sets to show that we can find
the configuration, which reaches a high accuracy while using as less models as possible.

This paper is part of an on-going research about physical design of forecast models inside
a database. We started to analyze the physical design from an offline point of view. How-
ever, an important question is how this structure should be maintained when time series
characteristics change, i.e., online physical design. In detail, we need to consider three
different types of maintenance. First, maintenance of the model state and disaggregation
keys, which is cheap and can be done incrementally every time a new tuple arrives. Sec-
ond, maintenance of model parameters, which is expensive and therefore could be trigged
either time or threshold based. Third, maintenance of the model pool itself. For the last
case, we need to monitor the real workload, maintenance cost and accuracy of different
forecast models. Depending on these statistics, we might decide to drop a model, which
has not been worthwhile or to create a new model to improve forecast accuracy.
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